PHYS 1403 Stars and Galaxies

Who are the early Greek astronomers and what was their work?

- Aristotle (350 BC): Uses lunar eclipses to show that the Earth is a sphere

66(.00)) 10

- Eratosthenes (250 BC) Finds the diameter of Earth

Earth's Average Diameter 7917.5 mi or 6370 km
Average because
Earth is not a perfect
soccer ball shape

Who are the early Greek astronomers and what was their work?

- Aristarchus (250 BC) finds relative diameter of sun. $150,000,000 \mathrm{~km}(1 / 110)=1363636.3636=2(681,818 \mathrm{~km})=1.4 \times 10^{6}$ km
- Hipparchus (134 BC) Discovers Precession

The resulting "wobbling" of Earth's axis of rotation around the vertical with respect to the Ecliptic (takes about 26,000 vears)

Questions for Today' Class

1. Who are the important early Greek astronomers and what was their work?
2. Who are the Renaissance Astronomers and what was their work?
3. How do we describe Motion of Objects in Space?
4. What is Galileo's law of falling body?
5. What are Newton's Laws of Motion?
6. What are Kepler's laws of planetary motion?

Who are the early Greek astronomers and what was their work?

- Aristarchus (250 BC) Uses lunar eclipse to find the relative diameter of the moon.
Moon diameter is $(6370 \times 2) / 3.5=3640 \mathrm{~km}$
- Aristarchus (250 BC) Finds the relative distance of the Moon

Moons distance $=110(3640)=400,400 \mathrm{~km}$
- Aristarchus (250 BC) Finds the relative distance of the Sun using quarter phase of the moon
Sun is 93 million miles from earth (150 million km)

Source: Paul Hewitt-Conceptual Physics

Who are the early Greek astronomers and what was their work?

- Geocentric Model: The early Greek philosophers believed that the Earth was in the center of the solar system and all the planets and sun revolved around it.

http://ecsst.blogspot.com/
- Observational Challenge: Retrograde Motion of Mars
 model.

Who are the early Greek astronomers and what was
their work?

- Ptolemy's Modification (100 AD): Epicycles - Planets rotate in small

- Ptolemy's Model

How do we describe motion of objects in space?

1. Speed
2. Velocity
3. Acceleration
4. Momentum
5. Force

*

n

The Renaissance Astronomers

- Nicolaus Copernicus (1473-1543)
- Galileo Galilei (1564-1642)
- Isaac Newton (1643-1727)
- Tyco Brahe (1546-1601) and
- Johannes Kepler (1571-1630).

How is velocity different from speed?

- Example : A runner makes one lap around a 200 m track in a time of 25 seconds. What is the runner's average speed and average velocity.

> Speed $=200 / 25=8 \mathrm{~m} / \mathrm{s}$
> Velocity $=0 / 25=0 \mathrm{~m} / \mathrm{s}$

- Velocity is with respect to reference point whereas speed is not.
- The moon orbits the Earth with constant speed but its velocity is different as time passes.

Why does Mass Matter?

- If two different vehicles move with the constant velocity and hit a wall, which vehicle will cause the most damage?
- We use the term Momentum to describe such interactions.
Momentum = Mass \times Velocity $=m v$
SI units of momentum is $\mathrm{kg} . \mathrm{m} / \mathrm{s}$
Example: An 18-wheeler will have a different impact on a wall compared to a car.
- Momentum is very important in describing motion of objects and its interaction with matter.

What happens when velocity changes with times?

- Acceleration (a): We define a quantity called acceleration (a).
- acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)=$ change in velocity $(\mathrm{m} / \mathrm{s}) /$ time interval (s) $a=\Delta v / \Delta t$
- i.e. how fast is velocity changing. A very common experience is when you step on a car's accelerator.

Force

- Force: It is a push or a pull.
- Force has both magnitude and direction.
- SI units of force are Newtons (N)
- Types of Forces

Contact Forces: Force is due
to physical contact between the bodies.
Example mechanical forces.
Field Force: No physical contact is necessary to experience the force.
Examples are Gravitational,
Electrical, Magnetic, and Nuclear Forces.

Adding Forces -> Net Force

- What is a Net force?

Force at other angles can also be added but calculations gets complex for this class

Adding Forces

Two forces are shown on a spacecraft. What is the net force acting on the ball? (NASA engineers use this concept as gravity assist to veer spacecraft towards other planets without using fuel)
a) 3
b) 4
c) 5
d) 0
e) -5

What is Galileo's Law of Falling Body?
Topics

1. Galileo's Observation of Motion
2. Law of Falling Body
3. Acceleration Due to Gravity

What are Newton's Law's of Motion?

Topics

1. Law of Inertia
2. Law of Force
3. Law of Action and Reaction
4. Difference between mass and weight
5. Work, Energy and Power

Galileo's Observations of Motion

- The acceleration of a freely falling body due to force of gravity is independent of the mass (weight), or shape of the falling object

Acceleration due to Gravity (g)

- The value of g is different for different planets, and on the same planet its value varies from one place to another. In case of planet Earth, for the purpose of computations we approximate the value of g to $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
- Moon's acceleration due to gravity is $1 / 6$ that of Earth.

Newton's Laws of Motion

Law of Inertia: A body continues at rest or in uniform motion in a straight line unless acted upon by some net force.

An astronaut floating in space will continue to float forever in a straight line unless some external force is accelerating him/her

Newton's Laws of Motion

The Law of Action and Reaction: To every action, there is an equal and opposite reaction.

The same force that is accelerating the boy forward, is accelerating
 the skateboard backward.
http://en.wikipedia.org/wiki/lmage:Skaters, showing_ newtons_third law.pn CC BY-SA 3.0

Work and Energy and Power

- Work: Work = Force \times distance

SI units: Newton's x meter = Joules

- Example: A 1 kg object at a height of 1 m from ground experience a force of 9.8 N , when it falls to the ground it does work that is $W=9.8 \mathrm{~N} \times 1 \mathrm{~m}=9.8 \mathrm{~N} . \mathrm{m}=9.8 \mathrm{~J}$
- Energy: Ability of a body to do work

Kinetic Energy Work due to motion is called Kinetic Energy (KE)
KE $=1 / 2 \times$ mass x velocity ${ }^{2}$ measured in Joules

- Example: If a 1 kg object fall from a height of 1 m with a velocity of $4.43 \mathrm{~m} / \mathrm{s}$ $\mathrm{KE}=1 / 2 \times 1 \mathrm{~kg} \times(1 \mathrm{~m} / \mathrm{s})^{2}=9.8 \mathrm{~J}$
- Gravitation Potential Energy Work due to Gravity is called Gravitational Potential Energy (GPE) measured in Joules
GPE $=$ mass $\times \mathrm{g} \times \mathrm{h}(\mathrm{h}=$ height with respect to a reference point $)$
- If a 1 kg object falls from a height of 1 m , its GPE is GPE $=1 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times 1 \mathrm{~m}=9.8 \mathrm{~J}$

Fundamental Law of Nature

- Conservation of Energy: In all the three examples above we find that Work = KE = GPE
Energy can neither be created or destroyed: It only transforms from one form to the other.
Example: Dropping a ball converts GPE to KE and at impact KE to heat, sound and work
- Power: Rate at which energy is expended

Power $(P)=$ Work $/$ time $=$ Joules /seconds $=$ watts (w)

What are Kepler's Laws of Planetary

 Motion?Topics

1. Tycho's Work
2. Conic Sections
3. Law of Ellipses and Geometry of the Ellipse
4. Eccentricity
5. Law of Equal Areas
6. Law of Periods

Where do Circles, Ellipse, Parabola and Hyperbola com from?

Conic Sections. The circle, ellipse, parabola, and hyperbola are all formed by the intersection of a plane with a cone. This is why such curves are called conic sections.

Kepler's Laws of Planetary Motion

The orbits of the planets are ellipses with the sun at one focus.

Kepler's $3^{\text {rd }}$ Law

A planet's orbital period (P) squared is proportional to its average distance from the sun (a) cubed:

$$
\begin{gathered}
\left(\mathrm{P}_{\mathrm{y}}=\text { period in years; } \mathrm{a}_{\mathrm{AU}}=\text { distance in } \mathrm{AU}\right) \\
\mathrm{P}_{\mathrm{y}}^{2}=\mathrm{a}_{\mathrm{AU}}^{3}
\end{gathered}
$$

If you know the period you can find the distance

Wednesday class this week

- Complete Class Assignment 3

Acknowledgment

- The slides in this lecture is for Tarleton: PHYS1411/PHYS1403 class use only
- Images and text material have been borrowed from various sources with appropriate citations in the slides, including PowerPoint slides from adopted text book.

