PHYS 1403 Stars and Galaxies

Recap of Important Laws

1. What are Newton's Laws of Motion? Law of Inertia:
A body stays at rest or in uniform motion until and unless an external force acts on it. Law of Force:
Acceleration of a body is proportional to the force it experiences and inversely proportional to the mass it has. Law of Action and Reaction: For every action there is equal and opposite reaction.

Recap of Important Laws

1. What is Galileo's law of falling body? In the absence of friction the acceleration due to gravity is constant.
For Earth g is $9.8 \mathrm{~m} / \mathrm{s}^{2}$

Recap of Important Laws

1. What are Kepler's laws of planetary motion? Law of Ellipses:
A planet revolves around the Sun in an ellipse, a circle is a special type of ellipse.
Law of Equal Areas:
A planet moves faster when it is closer to the Sun and slower when it is farthest from the Sun.
Law of Periods:
The period squared is equal to the cube of semi-major axis of the ellipse.

Why do we need to study circular motion?

Natural motion is not always straight line, many objects exhibit circular motion and stars and galaxies are no exception.

To describe motion of rotating bodies we use the terminology Angular analogue for linear motion are

Topics
Radian
Angular speed
Angular Velocity
Angular Acceleration
Torque
Angular Momentum.

What is Centripetal Force?

- Any object that moves in a circle or an arc has centripetal force
- Centripetal force (F_{c}) measured in Newton's $\mathrm{F}_{\mathrm{c}}=\mathrm{ma}=\mathrm{m} \mathrm{v}^{2} / \mathrm{r}$
- Centripetal (radial) acceleration $a_{c}=v^{2} / r$

Circumference $=2 \pi \mathrm{r}$
$\mathrm{v}=2 \pi \mathrm{r} / \mathrm{t}$

Angular Speed and Velocity

Angular speed (ω): How fast something is rotating

Angular Velocity (ω): How fast something is rotating, clockwise or counter clockwise
$\omega=$ change in angle / change in time
SI units rad/s or rev/s, or deg/s
Angular Acceleration (α): How fast angular velocity is changing $\alpha=$ change in $\omega /$ change in time

Sl units rad $/ \mathrm{s}^{2}$ or $\mathrm{rev} / \mathrm{s}^{2}$, or deg $/ \mathrm{s}^{2}$

Visual Demo of Centripetal Force

https://www.youtube.com/watch?v=Tctr8CIMOZA

What is Newton's Law of Gravitation?

Any two bodies are attracting each other through gravitation, with a force $\left(F_{g}\right)$ proportional to the product of their masses (M, m) and inversely proportional to the square of their distance (r). G is called gravitational constant.

Inverse-Square Law

What is Newtons Law of Gravity?

. Newton's Law of Gravity
Inverse Square Law
Gravitational Constant
Important Consequence of Newtons Laws

Gravity and Distance: The InverseSquare Law

Inverse-square law $--\frac{1}{r^{2}}$

- relates the intensity of an effect to the inversesquare of the distance from the cause
- in equation form: intensity $=1 /$ distance 2
- for increases in distance, there is decreases in force
- even at great distances, force approaches but never reaches zero

Force of Gravity and Inverse-Square Law

How to find the mass of Earth?

Weight $=$ Gravitational Force

Acceleration due to Gravity g depends on Mass and Size of a Planet

Weight = Gravitational Force
$m g=\frac{G M m}{r^{2}}$
$g=\frac{G M}{r^{2}}$
Apple (m)

Earth (M)

If we know G, M and r then we can find g

How do we describe orbital motion using Newton's Laws?

1. Center of mass and Gravity
2. Center of mass in Sun-Earth system
3. Types of Orbits
4. Geosynchronous Orbits
5. Escape Velocity
6. Artificial Gravity
7. Gravity Assist

Center of Gravity and Mass

Escape Velocity

Escape velocity is the velocity required to escape the gravitational force of attraction of an astronomical body

$$
v=\sqrt{\frac{2 G M}{r}}
$$

$\mathrm{M}=$ mass of the central body in kg
$\mathrm{G}=$ gravitational constant $(6.67 \times 10-11 \mathrm{~m} 3 / \mathrm{s} 2 / \mathrm{kg})$
$r=$ radius of the central body
For Earth it is $11.2 \mathrm{~km} / \mathrm{s}$ or 24,600 miles/hour

Yes, But Technology is Challenging

[^0]

Wednesday class this week

- Complete Class Assignment 4

Acknowledgment

- The slides in this lecture is for Tarleton: PHYS1411/PHYS1403 class use only
- Images and text material have been borrowed from various sources with appropriate citations in the slides, including PowerPoint slides from adopted text book.

[^0]:

