Examples of Modeling with Linear Functions and Equations

Example Could the table represent the values of a linear function?

x	7	9	11	13	15
y	43	46	49	52	55

Solution Yes. Notice that the changes in x in the table entries in the first row are always 2. The corresponding changes in y across the second row are always 3 . The same change in x always produces the same change in y.

Example Could the table represent the values of a linear function?

x	2	4	8	16
y	5	10	15	20

Solution No. The changes in y across the bottom row are always 5. If the function were linear, we would see the same changes in successive x's across the top row. But instead, the Δx 's are $2,4,8$. And so the values are not those of a linear function.

Example In this exercise write a constraint equation, choose two solutions, and graph the equation, marking your solutions. What is the relation between the time spent walking and the time spent canoeing on a 30 mile trip if you walk at 4 mph and canoe at 7 mph ?
Solution Let x represent the number of hours walking, and y represent the number of hours canoeing. Since distance equals rate multiplied by time, the distance walking is $4 x$ and the distance canoeing is $7 y$. Since the total trip is 30 miles, the constraint equation is

$$
4 x+7 y=30
$$

One solution is $x=4$ and $y=2$, represented graphically by (4,2). Another solution is $x=0$ and $y=\frac{30}{7}$. Here's a graph .

Example See exercise 14 on page 148 in the text.
Solution Observe that across the row of height values, the change in $h, \Delta h$, is always 2000 meters. The corresponding change in temperature, ΔT, is always $-13^{\circ} \mathrm{C}$ (temperature is decreasing). Since the same change in halways produces the same change in T, the function is linear. Its slope is $\frac{\Delta T}{\Delta h}=\frac{-13}{2000}=-0.0065$. The simplest formula using slope-intercept form, is

$$
T=15-.0065 h
$$

