Trig Equation with Inverse Trig Function

In this example we solve the equation

$$
\arcsin x-\arccos x=\frac{\pi}{6}
$$

Before beginning the solution steps, we observe two facts about x :

1. The domain of the arcsin and arccos function is $[-1,1]$, and so any solution x of this equation must be between -1 and 1 , that is,

$$
-1 \leq x \leq 1
$$

2. If x is a negative number, then $\arcsin (x)$ is in the interval $\left[-\frac{\pi}{2}, 0\right)$ and $\arccos (x)$ is in the interval $\left(\frac{\pi}{2}, \pi\right]$. This leads to the observation that if $x<0$,

$$
\arcsin x-\arccos x<0<\frac{\pi}{6}
$$

because we are subtracting a positive number from a negative number. Any solution x of this equation must be in the interval $[0,1]$:

$$
0 \leq x \leq 1
$$

With the observation that a solution must be a positive number ($x=0$ is not a solution), we begin the solution steps

$$
\begin{aligned}
\arcsin x-\arccos x & =\frac{\pi}{6} \\
\arcsin x & =\arccos x+\frac{\pi}{6} \quad \text { add } \arccos x \text { to both sides } \\
\sin (\arcsin x) & =\sin \left(\arccos x+\frac{\pi}{6}\right) \quad \text { take the sine of both sides of the equation } \\
x & =\sin (\arccos x) \cos \left(\frac{\pi}{6}\right)+\cos (\arccos x) \sin \left(\frac{\pi}{6}\right) \quad \text { use } \sin (A+B) \text { formula } \\
x & =\sqrt{1-x^{2}}\left(\frac{\sqrt{3}}{2}\right)+x \cdot \frac{1}{2} \quad \text { remember that } \arccos x \text { is in QI } \\
2 x & =\sqrt{1-x^{2}} \sqrt{3}+x \quad \text { multiply both sides by } 2 \\
x & =\sqrt{1-x^{2}} \sqrt{3} \quad \text { subtract } x \\
x^{2} & =\left(1-x^{2}\right)(3) \quad \text { square both sides of the equation } \\
x^{2} & =3-3 x^{2} \quad \quad \text { distributive law } \\
4 x^{2} & =3 \\
x^{2} & =\frac{3}{4} \quad \text { add } 3 x^{2} \text { to both sides } \\
x & =\frac{\sqrt{3}}{2} \text { or } x=-\frac{\sqrt{3}}{2} \text { take square root of both sides }
\end{aligned}
$$

Because the solution is a positive number, it must be the case that

$$
x=\frac{\sqrt{3}}{2}
$$

is the only possible solution. Since we squared both sides of the equation in one of the steps, we must check this answer to insure that it really balances the original equation.

$$
\begin{aligned}
\arcsin \frac{\sqrt{3}}{2}-\arccos \frac{\sqrt{3}}{2} & =\frac{\pi}{3}-\frac{\pi}{6} \\
& =\frac{\pi}{6}
\end{aligned}
$$

This confirms that the solution set is

$$
\left\{\frac{\sqrt{3}}{2}\right\}
$$

Here's a screenshot with $\mathrm{Y}_{1}=\sin ^{-1}(X)-\cos ^{-1}(X)-\pi / 6$
The Window used here is
$\mathrm{Xmin}=-1, \mathrm{Xmax}=1, \mathrm{Xscl}=\sqrt{ }(3) / 6, \mathrm{Ymin}=-3, \mathrm{Ymax}=1, \mathrm{Yscl}=1$

The only x-intercept is at $3 \sqrt{ }(3) / 6=\frac{\sqrt{3}}{2}$ and gives visual support to the solution found analytically.

