Properties of Logarithm Functions

These properties follow from the definition of a logarithm function as the inverse of an exponential function, and from the exponent rules.

- **1**. $\log_b 1 = 0$ [zero power rule: $b^0 = 1$]
- **2**. $\log_b b = 1$ $[b^1 = b]$
- 3. $\log_b b^x = x$ [composition of a function with its inverse is the identity function]
- 4. $b^{\log_b x} = x$ [composition of a function with its inverse is the identity function]
- 5. $\log_b M = \log_b N$ if and only if M = N [log functions are one-to-one].
- 6. $\log_b(M \cdot N) = \log_b M + \log_b N$ [from the addition of exponents rule: $a^m a^n = a^{m+n}$]
- 7. $\log_b\left(\frac{M}{N}\right) = \log_b M \log_b N$ [from the subtraction of exponents rule: $\frac{a^m}{a^n} = a^{m-n}$]
- 8. $\log_b M^p = p \log_b M$ [from the power rule: $(a^m)^n = a^{mn}$]