Properties of Logarithm Functions

These properties follow from the definition of a logarithm function as the inverse of an exponential function, and from the exponent rules.

1. $\log _{b} 1=0 \quad$ [zero power rule: $b^{0}=1$]
2. $\log _{b} b=1 \quad\left[b^{1}=b\right]$
3. $\log _{b} b^{x}=x \quad$ [composition of a function with its inverse is the identity function]
4. $b^{\log _{b} x}=x \quad$ [composition of a function with its inverse is the identity function]
5. $\log _{b} M=\log _{b} N$ if and only if $M=N$ [log functions are one-to-one].
6. $\log _{b}(M \cdot N)=\log _{b} M+\log _{b} N \quad$ [from the addition of exponents rule: $a^{m} a^{n}=a^{m+n}$]
7. $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N \quad$ [from the subtraction of exponents rule: $\frac{a^{m}}{a^{n}}=a^{m-n}$]
8. $\log _{b} M^{p}=p \log _{b} M \quad$ [from the power rule: $\left(a^{m}\right)^{n}=a^{m n}$]
