Exponential Functions

An exponential function $Q=f(t)$ has the formula

$$
f(t)=a \cdot b^{t}, a \neq 0, b>0
$$

where a is the initial value of $Q($ at $t=0)$ and b, the base, is the growth factor. The growth factor is given by

$$
b=1+r
$$

where r is the decimal representation of the percent rate of change. For $a>0$,

- if there is exponential growth, then $r>0$ and $b>1$.
- if there is exponential decay, then $r<0$ and $0<b<1$.

There are two basic forms for the graph of an exponential function:

Example: Determine whether a function given by a table is linear or exponential. Find a possible formula in each case.

x	0	1	2	3	4
$f(x)$	20	16	12	8	4
$g(x)$	12	9.6	7.68	6.144	4.9152

Solution: The difference of consecutive y-values is constant for function f and so the table could represent a linear function in this case. We find the slope between successive points:

$$
m=\frac{16-20}{1-0}=-4
$$

Since we know the y-intercept is 20 , we can write

$$
f(x)=-4 x+20
$$

and check this against the table entries.
In the case of function g, we examine the ratio of consecutive y-values:
9.6/12, 7.68/9.6, 6.144/7.68, etc.

In all cases we get a constant common ratio of 0.8 , so that each y-value changes by a factor of 0.8 . This indicates an exponential function.

To find a formula for this exponential function, we note that the base $b=0.8$ and the initial value at $x=0$ is 12. The formula

$$
g(x)=12 \cdot 0.8^{x}
$$

will produce the given table of values for $g(x)$.

Example: Find a formula for the exponential function that satisfies $f(4)=16$ and $f(7)=45.2548$.
Solution: The function $f(x)=a \cdot b^{x}$, and we must find the values of a and b. First write two equations

$$
\begin{aligned}
& a b^{7}=45.2548 \\
& a b^{4}=16
\end{aligned}
$$

Dividing, we can write

$$
\frac{a b^{7}}{a b^{4}}=\frac{45.2548}{16}
$$

and so

$$
\begin{aligned}
b^{3} & =2.828425 \\
b & =2.828425^{1 / 3}=1.4142
\end{aligned}
$$

We complete the problem by solving for a, and writing the formula for f

$$
\begin{aligned}
a \cdot 1.4142^{4} & =16 \\
a & =4.0001 \\
f(x) & =4.0001 \cdot 1.4142^{x}
\end{aligned}
$$

Example: Find the initial value a, growth/decay factor b, andgrowth/decay rate r for the exponential function

$$
Q(t)=0.057(2.5)^{-4 t}
$$

Solution: Use the exponent laws to write

$$
\begin{aligned}
Q(t) & =0.057(2.5)^{-4 t} \\
& =0.057\left((2.5)^{-4}\right)^{t} \\
& =0.057(0.0256)^{t}
\end{aligned}
$$

From this form we have

$$
\begin{aligned}
a & =0.057 \\
b & =0.0256 \\
r & =b-1=-0.9744
\end{aligned}
$$

The number r is commonly written as a percent:

$$
r=-97.44 \%
$$

Another way to express r is to say "the decay rate is 97.44%."
Example: Twenty-five percent of a radioactive substance decays in ten years. By what percent does the substance decay each year?

Solution: We don't have a numeric initial amount given, and so we will call it a. We know that after 10 years, 75 percent of the substance remains:

$$
0.75 a=a b^{10}
$$

We can divide both sides of the equation by a and write

$$
\begin{aligned}
0.75 & =b^{10} \\
b & =0.75^{1 / 10} \\
b & =0.9716
\end{aligned}
$$

Since $r=b-1$, we get

$$
r=0.9716-1=-0.0284
$$

We can say that

$$
r=-2.84 \%
$$

or the decay rate is 2.84% per year.

