Notes: Using the Half-Angle Formulas

Refer to the Formula List for these examples.
Example: If $\cos (A)=-0.91$ and $\sin (A)<0$ determine the following:

1. The quadrant for angle $A / 2=$?

Because cosine and sine are both negative, A must be in QIII.

$$
\begin{aligned}
180^{\circ} & <A<270^{\circ} \\
90^{\circ} & <A / 2<135^{\circ}
\end{aligned}
$$

So $A / 2$ is in QII.
2. $\sin (A)=$?

Since A is in QIII, $\sin (A)$ is negative and

$$
\begin{aligned}
\sin (A) & =-\sqrt{1-\cos ^{2}(A)} \\
& =-\sqrt{1-(-0.91)^{2}} \\
& =-0.41461
\end{aligned}
$$

It's a good idea to store this answer on your calculator because you will need it to find $\tan (A / 2)$. Let's go ahead and do that part now. Remember that \mathbf{X} is a good temporary location as long as you don't do a graph.

$$
\begin{aligned}
\tan \frac{A}{2} & =\frac{1-\cos A}{\sin A} \\
& =\frac{1-(-0.91)}{-0.41461} \\
& =-4.6068
\end{aligned}
$$

Here's the calculator view. Notice that there are some sign simplifications before using the calculator.

3. $\sin (A / 2)=$?

$$
\begin{aligned}
& \sin \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{2}} \text { Since } A / 2 \text { is in QII we choose }+. \\
& \qquad \begin{aligned}
\sin (A / 2) & =+\sqrt{\frac{1-(-0.91)}{2}} \\
& =0.97724
\end{aligned}
\end{aligned}
$$

4. $\cos (A / 2)=$?

$$
\begin{aligned}
& \cos \frac{A}{2}= \pm \sqrt{\frac{1+\cos A}{2}} \quad \text { Since } A / 2 \text { is in QII we choose }-. \\
& \qquad \begin{aligned}
\cos \frac{A}{2} & =-\sqrt{\frac{1+\cos A}{2}} \\
& =-\sqrt{\frac{1+(-0.91)}{2}} \\
& =-0.212134
\end{aligned}
\end{aligned}
$$

Example: Given $\sin (a)=-7 / 8$ and a is in quadrant IV, find the exact value of $\sin (a / 2)$.
Note: You are not allowed to use decimals in your answer.
To use the half-angle formulas we must find $\cos (a)$. Since a is in QIV, cosine is positive and

$$
\begin{aligned}
\cos (a) & =+\sqrt{1-\left(\frac{7}{8}\right)^{2}} \\
& =\sqrt{\frac{15}{64}}
\end{aligned}
$$

Since angle a is in QIV we have

$$
\begin{aligned}
270^{\circ} & <a<360^{\circ} \\
135^{\circ} & <a / 2<180^{\circ}
\end{aligned}
$$

and so $a / 2$ is in QII and $\sin (a / 20)$ is positive.

$$
\begin{aligned}
\sin \frac{a}{2} & =+\sqrt{\frac{1-\cos a}{2}} \\
& =\sqrt{\frac{1-\sqrt{\frac{15}{64}}}{2}}
\end{aligned}
$$

Here's how to type this for an online answer. Note carefully how the () are paired up.

$$
\operatorname{sqrt((1-sqrt(15/64))/2)~}
$$

Example: Given $\tan (a)=\frac{8}{\sqrt{17}}$ and a is in quadrant III, find the exact value of $\tan (a / 2)$.
Note: You are not allowed to use decimals in your answer.
Since a is in QIII both x and y are negative.

$$
\begin{aligned}
x & =-\sqrt{17} \\
y & =-8 \\
r & =\sqrt{(-\sqrt{17})^{2}+(-8)^{2}} \\
& =\sqrt{17+64} \\
& =\sqrt{81} \\
& =9
\end{aligned}
$$

Using this, we have

$$
\begin{aligned}
& \sin (a)=-\frac{8}{9} \\
& \cos (a)=-\frac{\sqrt{17}}{9}
\end{aligned}
$$

and

$$
\begin{aligned}
\tan \frac{a}{2} & =\frac{1-\cos a}{\sin a} \\
& =\frac{1-\left(-\frac{\sqrt{17}}{9}\right)}{-\frac{8}{9}} \\
& =\frac{9+\sqrt{17}}{-8} \\
& =-\frac{9+\sqrt{17}}{8}
\end{aligned}
$$

The online answer form is

$$
-(9+\text { sqrt }(17)) / 8
$$

