Examples of Quadratic Function Forms

Example Find the vertex and sketch a graph of $y=2 x^{2}-12 x+10$.
Solution We must change from Standard Form to Vertex Form. Here's how to use completing the square:

$$
\begin{aligned}
& y=2 x^{2}-12 x+10 \\
& y=2\left(x^{2}-6 x\right)+10 \\
& y=2\left(x^{2}-6 x+9\right)+10-2 \cdot 9 \\
& y=2(x-3)^{2}+10-18 \\
& y=2(x-3)^{2}-8
\end{aligned}
$$

This form shows that the graph of the parabola has a vertex at (3,-8). Since the coefficient of x^{2} is positive, the parabola opens upward. Its y-intercept is 10 . Here's a screen shot from the calculator in a zoom standard setting:

Example A quadratic function has x-intercepts -3 and 4 , and y-intercept 8 . Find a formula for this function in Factored Form.

Solution Since the x-intercepts are give, we can set up the Factored Form

$$
y=a(x+3)(x-4)
$$

In this case, we need to find the number a. Since we know another point on the graph, (0,8), we will substitute $x=0$ and $y=8$.

$$
\begin{aligned}
& 8=a(0+3)(0-4) \\
& 8=-12 a \\
& a=-\frac{8}{12} \\
& a=-\frac{2}{3}
\end{aligned}
$$

and write the function

$$
y=-\frac{2}{3}(x+3)(x-4)
$$

Here's a graph that shows the given intercepts:

Example A quadratic function's graph has vertex $(-2,-3)$ and y-intercept 5 . Find the symbolic representation of this function in Standard Form.
Solution We begin by writing a formula in Vertex Form

$$
y=a(x+2)^{2}-3
$$

To find the leading coefficient a we use the point $(0,5)$

$$
\begin{aligned}
& 5=a(0+2)^{2}-3 \\
& 5=4 a-3 \\
& a=2
\end{aligned}
$$

We can now write the Vertex Form equation

$$
y=2(x+2)^{2}-3
$$

It remains to change this to Standard Form

$$
\begin{aligned}
& y=2\left(x^{2}+4 x+4\right)-3 \\
& y=2 x^{2}+8 x+8-3 \\
& y=2 x^{2}+8 x+5
\end{aligned}
$$

