Notes and Examples: Using the Sum and Difference Formulas for Sine and Cosine

It is easy to think that the following is an identity:

$$
\sin (A+B)=\sin (A)+\sin (B)
$$

But if we let $A=30^{\circ}$ and $B=60^{\circ}$ then

$$
\begin{aligned}
\sin \left(30^{\circ}+60^{\circ}\right) & =\sin \left(30^{\circ}\right)+\sin \left(60^{\circ}\right) \\
\sin \left(90^{\circ}\right) & =\frac{1}{2}+\frac{\sqrt{3}}{2} \\
1 & =\frac{1+\sqrt{3}}{2} \text { False! }
\end{aligned}
$$

For the correct formulas, refer to the Formula List document for these exercises.
Example 1: Use an identity to find the exact value of each expression:
Note: You are not allowed to use decimals in your answer.
$\sin \left(13^{\circ}\right) \cos \left(17^{\circ}\right)+\cos \left(13^{\circ}\right) \sin \left(17^{\circ}\right)=?$
$\sin \left(269^{\circ}\right) \cos \left(29^{\circ}\right)-\cos \left(269^{\circ}\right) \sin \left(29^{\circ}\right)=?$
Solution: The first formula represents $\sin \left(13^{\circ}+17^{\circ}\right)=\sin \left(30^{\circ}\right)=\frac{1}{2}$
The second formula represents $\sin \left(269^{\circ}-29^{\circ}\right)=\sin \left(240^{\circ}\right)=-\frac{\sqrt{3}}{2}$
Example 2: Use a sum or difference identity to find the exact value of each expression:
Note: You are not allowed to use decimals in your answer.
$\sin \left(195^{\circ}\right)=?$
Solution: We must write 195° in terms of angles on the unit circle for which we have exact values:

$$
195^{\circ}=150^{\circ}+45^{\circ}
$$

Other choices, such as $135^{\circ}+60^{\circ}$ can also be made. Then

$$
\begin{aligned}
\sin \left(195^{\circ}\right) & =\sin \left(150^{\circ}+45^{\circ}\right) \\
& =\sin \left(150^{\circ}\right) \cos \left(45^{\circ}\right)+\cos \left(150^{\circ}\right) \sin \left(45^{\circ}\right) \\
& =\left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right)+\left(-\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) \\
& =\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4} \quad \text { (multiply radicals) } \\
& =\frac{\sqrt{2}-\sqrt{6}}{4}
\end{aligned}
$$

For an online answer in this example, you can type:

$$
(\text { sqrt(2)-sqrt(6))/4 }
$$

and be sure to use parentheses correctly.

Example 3: The function $\sin \left(\frac{\pi}{2}-x\right)$ can be written (simplified) as ?
Solution: This problem uses radian mode.

$$
\begin{aligned}
\sin \left(\frac{\pi}{2}-x\right) & =\sin \left(\frac{\pi}{2}\right) \cos (x)-\cos \left(\frac{\pi}{2}\right) \sin (x) \\
& =(1) \cos (x)-(0) \sin (x) \\
& =\cos (x)
\end{aligned}
$$

Another way to check this is to look at the graph of $y=\sin \left(\frac{\pi}{2}-x\right)$ and see that it's the same as the graph of $y=\cos (x)$.

Example 4: Given $\sin (\alpha)=-\frac{2}{9}$ and α is in quadrant IV and $\cos (\beta)=\frac{\sqrt{9}}{5}=\frac{3}{5}$ (we get an exact radical here!)
and β is in quadrant IV. Use sum and difference formulas to find the following: Note: You are not allowed to use decimals in your answer.
$\sin (\alpha+\beta)=$?
Solution: We must find the sine and cosine values for angle α and for angle β. First find $\cos (\alpha)$. Since

$$
\sin (\alpha)=\frac{y}{r}=-\frac{2}{9}
$$

and α is in QIV, x must be positive and y must be negative (remember $r>0$, always).

$$
\begin{aligned}
x & =? \\
y & =-2 \\
r & =9
\end{aligned}
$$

Since

$$
x^{2}+(-2)^{2}=9^{2}
$$

we get

$$
\begin{aligned}
x & =\sqrt{77} \text { and } \\
\cos (\alpha) & =\frac{\sqrt{77}}{9}
\end{aligned}
$$

Next we must find $\sin (\beta)$. Since β is in QIV, x is positive and y is negative

$$
\begin{aligned}
& x=\sqrt{9}=3 \text { an exact radical in this problem } \\
& y=? \\
& r=5
\end{aligned}
$$

Since

$$
3^{2}+y^{2}=5^{2}
$$

we get

$$
\begin{aligned}
y & =-4 \\
\sin (\beta) & =-\frac{4}{5} \text { remember ASTC }
\end{aligned}
$$

We now assemble all the function values we need to find $\sin (\alpha+\beta)$:

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \\
& =\left(-\frac{2}{9}\right)\left(\frac{3}{5}\right)+\left(\frac{\sqrt{77}}{9}\right)\left(-\frac{4}{5}\right) \\
& =-\frac{6}{45}+\left(-\frac{4 \sqrt{77}}{45}\right) \\
& =\frac{-6-4 \sqrt{77}}{45}
\end{aligned}
$$

For an online answer type
$(-6-4 \operatorname{sqrt}(77)) / 45$

