Examples of Sinusoid Graphs-Transformations of Sine and Cosine

We will use the information we have developed to do two kinds of problems:

1. Given a function of the form $y=A \sin (B(x-h))+k$ or $y=A \cos (B(x-h))+k$ find the key features of the graph.
2. Given a graph of a sinusoid, find a formula for it in terms of sine or cosine.

Example: Find the amplitude, period, and phase shift for the graph of

$$
y=-17 \cos (8 \pi x+9)
$$

Solution: The amplitude is $A=|-17|=17$, a positive number. The period is $\frac{2 \pi}{8 \pi}=\frac{1}{4}$. To find the phase shift, rewrite the function

$$
y=-17 \cos (8 \pi x+9)=-17 \cos \left(8 \pi\left(x-\frac{-9}{8 \pi}\right)\right)
$$

This shows that the phase shift is $-\frac{9}{8 \pi}$, a shift to left.
Example: Find the amplitude, period, phase shift, and midline of the function

$$
y=-8 \cos (6 x)-3
$$

Solution: The amplitude is $|-8|=8$. The period is $\frac{2 \pi}{6}=\frac{\pi}{3}$. Rewriting the function as

$$
y=-8 \cos (6(x-0))-3
$$

shows that the phase shift is 0 (no shift). The midline is

$$
y=-3
$$

The graph is a cosine function that has been stretched vertically by a factor of 8 , reflected about the x-axis, squeezed horizontally by a factor $\frac{1}{6}$, and shifted down 3 units. Since the period is $P=\frac{\pi}{3}$ the critical value occur at multiples of $\frac{P}{4}=\frac{\pi}{12}$. Here's a Desmos graph with custom scaling to show these features. Note the reflected cosine pattern of the critical points: low, med, high, med, low.

Example: Find a formula for this graph of a trigonometric function.

The function may be written as $f(x)=a \sin \left(\frac{2 \pi}{P}(x-b)\right)+c$ or $f(x)=a \cos \left(\frac{2 \pi}{P}(x-b)\right)+c$. Hint: a, b, c, and P can be chosen to be integers.

Solution: The high value is 0 and the low value is -6 . Therefore the amplitude

$$
a=3
$$

and the midline

$$
y=c=-3
$$

Now look for a convenient (integer) point on the midline. This would let us use the sine function. But none are apparent and we must use the cosine.
Therefore look for a convenient high value and we see that at $x=2, y=0$, that is $(2,0)$ is a high point on the graph. Since the cosine graph starts at the high value, it must be that we have a cosine graph shifted to the right 2 units, so

$$
b=2
$$

Find the period P by looking at the distance between successive peaks from $x=-4$ to $x=2$. The period

$$
P=6
$$

The information we need is complete and we can write

$$
f(x)=3 \cos \left(\frac{2 \pi}{6}(x-2)\right)-3
$$

Here's a graph of $f(x)$ which matches the given graph.

Example: Find a formula for this graph of a trigonometric function.

Solution: It's clear that the amplitude is 2 , the period $P=14 \pi$, and that the midline is

$$
y=0(x \text {-axis })
$$

A convenient midline point leads us to choose a sine function. But the graph starts in the middle and goes to low instead of high. It must be a sine graph that is reflected about the x-axis and the multiplier in front must be $a=-2$. There is no horizontal/phase shift $(h=0)$ or vertical shift $(k=0)$ and we have

$$
f(x)=-2 \sin \left(\frac{2 \pi}{14 \pi}(x-0)\right)+0=-2 \sin \left(\frac{x}{7}\right)
$$

A quick Desmos/calculator graph with custom window: $\mathrm{xmin}=-14 \mathrm{pi}, \mathrm{xmax}=14 \mathrm{pi}, \mathrm{xscale}=7 \mathrm{pi} ; \mathrm{ymin}=-3$, $y \max =3$, yscale $=1$ shows a match with the given graph.

