Notes: Using the Tangent Sum/Difference, Double Angle Formulas

Refer to the Formula List for these examples.

Exercise 1: Use an identity to find the exact value of each expression: Note: You are not allowed to use decimals in your answer. $\frac{\tan(479^\circ) - \tan(239^\circ)}{1 + \tan(479^\circ)\tan(239^\circ)} = ?$

Solution: This must be the formula for tan(A - B). Then

$$\frac{\tan(479^{\circ}) - \tan(239^{\circ})}{1 + \tan(479^{\circ})\tan(239^{\circ})} = \tan(479^{\circ} - 239^{\circ})$$
$$= \tan(240^{\circ})$$
$$= \sqrt{3}$$

Exercise 2: If sin(A) = 0.35 and cos(A) < 0, determine the following to at least four decimal places: A. cos(A) = ?

Solution: Since cos(A) is negative we can write

$$\cos(A) = -\sqrt{1 - \sin^2(A)}$$

= -\sqrt{1 - (0.35^2)}
= -0.9367

Calculator tip: Set your calculator to show four decimal places with MODE:

NORMA	🛯 SCI ENG	
FLOAT	0123556789	
RADIA	II DEGREE	
FUNC	PAR POL SEQ	
CONNE	CTED DOT	
SEQUE	INTIAL STAUL	
REAL	a+bi re^8i	
FULL	HORIZ G-T	
+DEXT+		

Then store your calculator result in the quick temporary variable X:

Now whenever we need cos(A) for the calculator we can press **X**, which still has the full internal accuracy for the result.

B. sin(2A) = ?

Solution: Use the double angle formula for sine. On the calculator type **X** for cos(A)

$$sin(2A) = 2 sin(A) cos(A)$$

= 2(.35)(-.9367 [use X])
= -0.6557
- $\sqrt{1-.35^{2}}$ +X
-.9367
2*0.35*X
-.6557

C. $\cos(2A) = ?$

Solution: Your have a choice of two formulas. Use the one with the original information

$$\cos(2A) = 1 - 2\sin^2(A)$$

= 1 - 2 * (.35)²
= 0.7550 (this is exact)

D. tan(2A) = ?

Solution: Use the Quotient Identity

$$\tan(2A) = \frac{\sin(2A)}{\cos(2A)}$$
$$= \frac{2\sin(A)\cos(A)}{1 - 2\sin^2(A)}$$
$$= \frac{2 * (.35) * (-.9367 \text{ use } X)}{1 - 2 * (.35)^2}$$
$$= -0.8685$$

We can use the ANS variable on the calculator, which now stores 0.7550, to help the setup.

240.3348	6557
1-2*.35 ² (2*.35*X)	.7550 /Ans 8685

D. The quadrant for 2A is ?

Solution. Note that sin(2A) is negative and cos(2A) is positive. The angle 2A must be in QIV.

Exercise 3: If $\tan \theta = 9/6$ and $\cos \theta > 0$ then find $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$.

Solution: We must find $\sin\theta$ and $\cos\theta$. Since tangent and cosine are positive, θ is in QI. Then

3

we have

Then

Now use the double angle formulas:

 $\sin 2\theta = 2\sin\theta\cos\theta$ $=2\left(\frac{3}{\sqrt{13}}\right)\left(\frac{2}{\sqrt{13}}\right)$ $=\frac{12}{13}$

and

Since we know both sine and cosine of 2θ exactly b use the Quotient Identity to find $\tan 2\theta$

Exercise 4: Find $\cos 2\theta$ if $\sin \theta = \frac{8}{17}$.

Solution: Use the cosine double angle formula that has the sine function:

 $=\frac{161}{289}$ Don't forget the calculator tricks to help with fractions.

Comment In these exercises we found the sine and cosine double angle before finding the tangent double angle. In such cases it's easiest to use the Quotient Identity

 $\cos 2\theta = 1 - 2\sin^2\theta$

 $= 1 - 2\left(\frac{8}{17}\right)^2$

$$\cos 2\theta = 2\cos^2\theta - 1$$
$$= 2\left(\frac{2}{\sqrt{13}}\right)^2 - 1$$
$$= 2\left(\frac{4}{13}\right) - \frac{13}{13}$$
$$= -\frac{5}{13}$$

$$2\theta = \frac{\sin 2\theta}{\cos 2\theta}$$
$$= \frac{\frac{12}{13}}{-\frac{5}{13}}$$
$$= -\frac{12}{5}$$

$$y = 3$$
$$r = \sqrt{2^2 + 3^2} = \sqrt{13}$$
$$\sin \theta = \frac{3}{\sqrt{13}}$$
$$\cos \theta = \frac{2}{\sqrt{13}}$$

 $\tan\theta = \frac{y}{x} = \frac{9}{6} = \frac{3}{2}$

x = 2

r

$$= 2\left(\frac{2}{\sqrt{13}}\right)^2 - 1$$
$$= 2\left(\frac{4}{13}\right) - \frac{13}{13}$$
$$= -\frac{5}{13}$$

$$= -\frac{5}{13}$$
ly, it is simplest to
$$\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}$$

$$= \frac{\frac{12}{13}}{-\frac{5}{12}}$$

$$\tan(2A) = \frac{\sin(2A)}{\cos(2A)}$$

If we're given the value of $\tan A$ and nothing else, we can still find $\tan 2A$ with the tangent double angle formula.

Example: Given: $\tan A = \frac{3}{4}$. Find $\tan 2A$.

Solution: There's not enough information to determine whether and A is in QI or QIII, and so we cannot find sin A or cos A. But we can still answer the question

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$
$$= \frac{2 * \left(\frac{3}{4}\right)}{1 - \left(\frac{3}{4}\right)^2}$$
$$= \frac{24}{7}$$

Score an assist to the calculator.