Trig Equations Part II: Approximate Solutions and Multiple Angles

In these notes we consider a hybrid trig equation involving the quadratic formula, and some example which have a multiple angle.

Example: The smallest positive number for which

$$
4 \cos ^{2} x-9 \cos x+2=0
$$

is $x=$?
Solution: First we must recognize that this equation is a quadratic equation in $\cos x$ instead of x. To solve it for $\cos x$ we will use the quadratic formula with $a=4, b=-9$, and $c=2$.

$$
\begin{aligned}
\cos x & =\frac{-(-9) \pm \sqrt{(-9)^{2}-4(4)(2)}}{2 \cdot 4} \\
& =\frac{9 \pm \sqrt{81-32}}{8} \\
& =\frac{9 \pm \sqrt{49}}{8} \\
& =\frac{9 \pm 7}{8} \\
& =2 \text { or } \frac{1}{4}
\end{aligned}
$$

[Note: The facts that a, b, and c are integers and that the discriminant $b^{2}-4 a c=49$, a perfect square, tell us that the left side of the equation could be factored.]

We now have two simple trig equations to solve

$$
\left[\cos x=2 \text { or } \cos x=\frac{1}{4}\right]
$$

The first equation has no solutions since $\cos x \leq 1$, always. Now consider

$$
\cos x=\frac{1}{4}
$$

Since the cosine function is positive in QI and QIV, there are two answers. Since this equation does not involve the special angles, we will use the calculator in radian mode to find the answer is QI. The answer in QI is also a reference angle for the answer in QIV, and so we will subtract is from 2π to get both approximate solutions in the interval $[0,2 \pi]$.

The smallest positive number is $x=1.3181$.

Let's do a graph to see these two results. We will use Desmos since it recognizes the $\cos ^{2}$ notation.

From the scale on the x -axis you can read the approximate solutions.
Example: The equation

$$
\cos (3 x)=\frac{1}{2}
$$

has six solutions between 0 and 360 degrees. Find the two solutions between 0 and 120 degrees.
Solution: We have degree mode and special angles in this problem. Since $\cos (3 x)$ is positive, we must have the angle $3 x$ in either QI or QIV. The reference angle in QI (and a solution) is 60°. The angle ins QIV must be

$$
360^{\circ}-60^{\circ}=300^{\circ}
$$

So far, we have

$$
3 x=60^{\circ}, 300^{\circ}
$$

We will divide by 3 to find x. Since we must have all answers between 0° and 360° we will add multiples of 360° to both 60° and 300°.

$$
\begin{aligned}
3 x & =60^{\circ}, 300^{\circ}, 420^{\circ}, 660^{\circ}, 780^{\circ}, 1020^{\circ} \\
x & =20^{\circ}, 100^{\circ}, 140^{\circ}, 220^{\circ}, 260,^{\circ} 340^{\circ}
\end{aligned}
$$

The angles between 0 and 120 degrees are 20° and 100°. This time we'll graph the function

$$
\cos (3 x)-\frac{1}{2}
$$

in degree mode! Here's the Desmos version.

Here's a snip showing the Desmos window settings:

You can also set this up with your calculator.
Example: The smallest positive number for which

$$
3 \sin (2 x-1)=1
$$

is $x=$?
Solution: We are in radian mode here.

$$
\sin (2 x-1)=\frac{1}{3}
$$

Since $1 / 3$ is positive, this angle must be in QI or QII. The inverse sine function will give us the solution (and reference angle) in QI, the smallest number possible.

$$
2 x-1=\sin ^{-1}\left(\frac{1}{3}\right)
$$

Now treat this as a linear equation in x. Add 1 and divide by 2 .

$$
\begin{aligned}
x & =\frac{\sin ^{-1}\left(\frac{1}{3}\right)+1}{2} \\
& =0.66992
\end{aligned}
$$

Here's the calculator view.

Extra innings: A graph of $3 \sin (2 x-1)-1$ shows that there are three more solutions between 0 and 2π. Can you find each rounded off to five decimal places?

