Notes: Inverse Trig Functions and Examples

The sine, cosine, and tangent functions are periodic, and so we must restrict the domain in order to define an inverse that will be a function.

1. Inverse Sine, written $\arcsin (x)$ or $\sin ^{-1}(x)$ [remember, the -1 is NOT an exponent].

$$
y=\sin ^{-1}(x)=\arcsin (x)
$$

means
A. $\sin (y)=x$ and
B. $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ or in degree mode, $-90^{\circ} \leq y \leq 90^{\circ}$
" y is the number (angle) in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is x."
Here's a graph of $\sin ^{-1}(x)$. Note that $\frac{\pi}{2}=1.57$, approximately

C. The domain of $\arcsin (x)$ is $[-1,1]$ and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]=\left[-90^{\circ}, 90^{\circ}\right]$ (degree mode) .
D. $\sin ^{-1}(x)$ is an odd function: $\sin ^{-1}(-x)=-\sin ^{-1}(x)$.
2. Inverse Cosine, written $\arccos (x)$ or $\cos ^{-1}(x)$

$$
y=\cos ^{-1}(x)=\arcsin (x)
$$

means
A. $\cos (y)=x$ and
B. $0 \leq y \leq \pi$ or in degree mode, $0^{\circ} \leq y \leq 180^{\circ}$
" y is the number (angle) in the interval $[0, \pi]$ whose cosine is x."
Here's a graph of $\arccos x$

C. The domain of $\cos ^{-1}(x)$ is $[-1,1]$ and the range is $[0, \pi]=\left[0^{\circ}, 180^{\circ}\right]$.
D. $\cos ^{-1}(x)$ is neither an odd function nor an even function.
3. Inverse Tangent, written $\arctan (x)$ or $\tan ^{-1}(x)$

$$
y=\tan ^{-1}(x)=\arctan (x)
$$

means
A. $\tan (y)=x$ and
B. $-\frac{\pi}{2}<y<\frac{\pi}{2}$ or $-90^{\circ}<y<90^{\circ}$ (degree mode)

Here's a graph of $\arctan (x)$

C. $\tan ^{-1}(x)$ is an odd function
D. The domain of $\arctan x$ is $(-\infty, \infty)$ and the range is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. The graph has horizontal asymptotes $y=-\frac{\pi}{2}$ and $y=\frac{\pi}{2}$.

Examples

1. Inverse trig function values:
A. $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=-\frac{\pi}{4}=-45^{\circ}$ (degree mode)
B. $\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=\frac{3 \pi}{4}\left(\operatorname{not}-\frac{\pi}{4}\right)=135^{\circ}$
2. Complete the following:
A. $\arccos \left(\cos \left(37^{\circ}\right)\right)=?^{\circ}$

The angle is in QI and so the answer is 37°
B. $\arccos \left(\cos \left(-25^{\circ}\right)\right)=$? ${ }^{\circ}$

The range of $\arccos (x)$ is $\left[0^{\circ}, 180^{\circ}\right]$ and so the answer can't be -25°. But the cosine function is even, so $\arccos \left(\cos \left(-25^{\circ}\right)\right)=\arccos \left(\cos \left(25^{\circ}\right)\right)=25^{\circ}$
C. $\arccos \left(\cos \left(100^{\circ}\right)\right)=?^{\circ}$

Because the 100° is in the range of $\arccos (x)$, the answer is 100°.
You can check these with your calculator in Degree mode.
3. Find an approximate value of each expression correct to at least five decimal places if it is defined, otherwise, input undefined.
A. $\tan ^{1} 1.49=$?
B. $\sin ^{-1} 1.49=$?

Be sure to use Radian mode on your calculator. Since 1.49 is not in the domain of $\sin ^{-1}(x)$ it will be undefined.

4. Find the exact value of each expression:
A. $\sec (\arctan (2))$
B. $\cos \left(2 \sin ^{-1}\left(\frac{5}{13}\right)\right)$

For part A, let angle $A=\arctan 2$ so that $\tan (A)=2=\frac{2}{1}$. Since tangent is $\frac{y}{x}$ we have

$$
\begin{aligned}
x & =1 \\
y & =2 \\
r & =\sqrt{1^{2}+2^{2}}=\sqrt{5}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sec (\arctan (2)) & =\sec (A) \\
& =\frac{r}{x} \\
& =\frac{\sqrt{5}}{1} \\
& =\sqrt{5}
\end{aligned}
$$

For part B , let $A=\sin ^{-1} \frac{5}{13}$ and so the form of the problem is $\cos (2 A)$. We have a choice of two formulas. Use the one with sine $\operatorname{since} \sin (A)=\frac{5}{13}$ is given.

$$
\begin{aligned}
\cos (2 A) & =1-2 \sin ^{2} A \\
& =1-2\left(\frac{5}{13}\right)^{2} \\
& =\frac{119}{169}
\end{aligned}
$$

5. Complete the identity using the triangle method
A. $\cos \left(\tan ^{-1}(x)\right)=$?
B. $\sin \left(\sec ^{-1}(x)\right)=$?

For parts A and \mathbf{B} use this standard right triangle

Let $A=\tan ^{-1}(x)$ so that $\tan (A)=x=\frac{x}{1}=\frac{o p p}{a d j}=\frac{b}{a}$. In the picture $a=x, b=1$, and $c=\sqrt{x^{2}+1^{2}}$. The

$$
\begin{aligned}
\cos \left(\tan ^{-1}(x)\right) & =\cos (A) \\
& =\frac{a d j}{h y p} \\
& =\frac{b}{c} \\
& =\frac{1}{\sqrt{x^{2}+1}}
\end{aligned}
$$

For an online answer, type

$$
\left.1 / \text { sqrt(} x^{\wedge} 2+1\right)
$$

For part B consider the same triangle with $A=\sec ^{-1}(x)$ and

$$
\sec (A)=x=\frac{x}{1}=\frac{h y p}{a d j}=\frac{c}{b}
$$

So $a=$?, $b=1$ and $c=x$. Using the Pythagorean Theorem gives

$$
\begin{aligned}
a & =\sqrt{c^{2}-b^{2}} \\
& =\sqrt{x^{2}-1^{2}}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sin \left(\sec ^{-1}(x)\right) & =\sin (A) \\
& =\frac{o p p}{h y p} \\
& =\frac{a}{c} \\
& =\frac{\sqrt{x^{2}-1}}{x}
\end{aligned}
$$

The online answer form is

$$
\operatorname{sqrt}\left(x^{\wedge} 2-1\right) / x
$$

