Notes: Inverse Trig Functions and Examples

The sine, cosine, and tangent functions are periodic, and so we must restrict the domain in order to define an inverse that will be a function.

1. Inverse Sine, written $\arcsin(x)$ or $\sin^{-1}(x)$ [remember, the -1 is NOT an exponent].

$$y = \sin^{-1}(x) = \arcsin(x)$$

means

- A. sin(y) = x and
- **B.** $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ or in degree mode, $-90^{\circ} \le y \le 90^{\circ}$

"y is the number (angle) in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is x."

Here's a graph of $\sin^{-1}(x)$. Note that $\frac{\pi}{2} = 1.57$, approximately

- C. The domain of $\arcsin(x)$ is [-1, 1] and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] = \left[-90^{\circ}, 90^{\circ}\right]$ (degree mode).
- **D**. $\sin^{-1}(x)$ is an odd function: $\sin^{-1}(-x) = -\sin^{-1}(x)$.
- **2.** Inverse Cosine, written $\arccos(x)$ or $\cos^{-1}(x)$

$$y = \cos^{-1}(x) = \arcsin(x)$$

means

A. $\cos(y) = x$ and

B. $0 \le y \le \pi$ or in degree mode, $0^\circ \le y \le 180^\circ$

"*y* is the number (angle) in the interval $[0, \pi]$ whose cosine is *x*."

Here's a graph of $\arccos x$

- C. The domain of $\cos^{-1}(x)$ is [-1, 1] and the range is $[0, \pi] = [0^{\circ}, 180^{\circ}]$.
- **D**. $\cos^{-1}(x)$ is neither an odd function nor an even function.

3. Inverse Tangent, written $\arctan(x)$ or $\tan^{-1}(x)$

 $y = \tan^{-1}(x) = \arctan(x)$

means

A. tan(y) = x and

B. $-\frac{\pi}{2} < y < \frac{\pi}{2}$ or $-90^{\circ} < y < 90^{\circ}$ (degree mode)

Here's a graph of $\arctan(x)$

- C. $\tan^{-1}(x)$ is an odd function
- **D**. The domain of $\arctan x$ is $(-\infty, \infty)$ and the range is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. The graph has horizontal asymptotes $y = -\frac{\pi}{2}$ and $y = \frac{\pi}{2}$.

Examples

1. Inverse trig function values:

A.
$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4} = -45^{\circ}(\text{degree mode})$$

B. $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \frac{3\pi}{4} \pmod{-\frac{\pi}{4}} = 135^{\circ}$

- 2. Complete the following:
 - A. arccos(cos(37°)) = ?° The angle is in QI and so the answer is 37°
 - **B.** $\operatorname{arccos}(\cos(-25^\circ)) = ?^\circ$ The range of $\operatorname{arccos}(x)$ is $[0^\circ, 180^\circ]$ and so the answer can't be -25° . But the cosine function is **even**, so

 $\arccos(\cos(-25^\circ)) = \arccos(\cos(25^\circ)) = 25^\circ$

C. $\arccos(\cos(100^\circ)) = ?^\circ$

Because the 100° is in the range of $\arccos(x)$, the answer is 100°.

You can check these with your calculator in Degree mode.

- 3. Find an approximate value of each expression correct to at least five decimal places if it is defined, **otherwise**, **input undefined**.
 - A. $\tan^1 1.49 = ?$
 - **B**. $\sin^{-1}1.49 = ?$

Be sure to use **Radian** mode on your calculator. Since 1.49 is not in the domain of $\sin^{-1}(x)$ it will be **undefined**.

- 4. Find the exact value of each expression:
 - A. sec(arctan(2))
 - **B**. $\cos\left(2\sin^{-1}\left(\frac{5}{13}\right)\right)$

For part A, let angle $A = \arctan 2$ so that $\tan(A) = 2 = \frac{2}{1}$. Since tangent is $\frac{y}{x}$ we have

$$x = 1$$

$$y = 2$$

$$r = \sqrt{1^2 + 2^2} = \sqrt{5}$$

Then

$$\sec(\arctan(2)) = \sec(A)$$
$$= \frac{r}{x}$$
$$= \frac{\sqrt{5}}{1}$$
$$= \sqrt{5}$$

For part B, let $A = \sin^{-1} \frac{5}{13}$ and so the form of the problem is $\cos(2A)$. We have a choice of two formulas. Use the one with sine since $\sin(A) = \frac{5}{13}$ is given.

$$\cos(2A) = 1 - 2\sin^2 A$$

= 1 - 2\left(\frac{5}{13}\right)^2
= \frac{119}{169}

- 5. Complete the identity using the triangle method
 - A. $\cos(\tan^{-1}(x)) = ?$
 - **B**. $\sin(\sec^{-1}(x)) = ?$

For parts A and B use this standard right triangle

Let $A = \tan^{-1}(x)$ so that $\tan(A) = x = \frac{x}{1} = \frac{opp}{adj} = \frac{b}{a}$. In the picture a = x, b = 1, and $c = \sqrt{x^2 + 1^2}$. The

$$\cos(\tan^{-1}(x)) = \cos(A)$$
$$= \frac{adj}{hyp}$$
$$= \frac{b}{c}$$
$$= \frac{1}{\sqrt{x^2 + 1}}$$

For an online answer, type

 $1/sqrt(x^2+1)$

For **part B** consider the same triangle with $A = \sec^{-1}(x)$ and $\sec(A) = x = \frac{x}{1} = \frac{hyp}{adj} = \frac{c}{b}$

So a = ?, b = 1 and c = x. Using the Pythagorean Theorem gives

$$a = \sqrt{c^2 - b^2}$$
$$= \sqrt{x^2 - 1^2}$$

Then

$$\sin(\sec^{-1}(x)) = \sin(A)$$
$$= \frac{opp}{hyp}$$
$$= \frac{a}{c}$$
$$= \frac{\sqrt{x^2 - 1}}{x}$$

The online answer form is

 $sqrt(x^2-1)/x$