Complex Numbers

Definition of *i*

$$i = \sqrt{-1}$$
 and $i^2 = -1$

With this definition, we can handle square roots of negative numbers:

For x > 0, $\sqrt{-x} = \sqrt{-1} \sqrt{x} = i\sqrt{x}$

Example $\sqrt{-25} = 5i$

Definition A complex number can be written in the form a + bi where a and b are real numbers, and $i = \sqrt{-1}$.

Definition The conjugate of a complex number a + bi is defined as

$$\overline{a+bi} = a-bi$$

Example

$$\overline{2-3i} = 2+3i$$

Operations with complex numbers

- 1. Complex numbers can be *added* or *subtracted* by combining like terms.
- 2. Complex numbers can be *multiplied* by the *FOIL METHOD*.
- **3**. Complex numbers can be *divided* by multiplying numerator and denominator by the *conjugate of the denominator*.

Example Add: (3 + 2i) + (4 - 8i) = 7 - 6iExample Subtract: (5 - 2i) - (2 - 6i) = 3 + 4iExample Multiply: (5 - 3i)(4 + 2i)Solution Use the FOIL method to obtain $(5 - 3i)(4 + 2i) = 20 + 10i - 12i - 6i^2$ FOIL = 20 - 2i - (6)(-1) replace i^2 with -1 = 20 - 2i + 6= 26 - 2i

Example Divide: $\frac{26-2i}{4+2i}$

Solution Multiply numerator and denominator by
$$4 - 2i$$

 $26 - 2i$ $26 - 2i$ $4 - 2i$

$$\frac{26-2i}{4+2i} = \frac{26-2i}{4+2i} \cdot \frac{4-2i}{4-2i} \text{ conjugate of denominator}$$
$$= \frac{104-52i-8i+4i^2}{16-8i+8i-4i^2}$$
$$= \frac{104-60i-4}{16+4}$$
$$= \frac{100-60i}{20}$$
$$= 5-3i$$