Combining Functions

New functions can be formed from old ones in two basic ways:

1. By arithmetic operations

A. Addition

(f-g)(x) = f(x) - g(x)

(f+g)(x) = f(x) + g(x)

C. Multiplication

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

D. Division

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
, provided $g(x) \neq 0$

Here are some examples

1. Let $f(x) = x^2 + 3$ and g(x) = 2x - 4. Then

$$(f-g)(x) = f(x) - g(x)$$

= (x² + 3) - (2x - 4)
= x² - 2x + 7

2. With the same definitions of f, g we have

$$\frac{f}{g}(4) = \frac{f(4)}{g(4)} = \frac{4^2 + 3}{2 \cdot 4 - 4} = \frac{19}{4}$$

2. By composition.

If f, g are functions with ran f a subset of dom g then the composition of f with g is defined by

$$(f \circ g)(x) = f(g(x))$$

Examples

1. Let $f(x) = x^2 + 3$ and g(x) = 2x - 4. Then

$$f \circ g(5) = f(g(5))$$

= f(2 \cdot 5 - 4)
= f(6)
= 6² + 3
= 39

2. Using these same functions again we have

$$g \circ f(5) = g(f(5))$$

= $g(5^2 + 3)$
= $g(28)$
= $2 \cdot 28 - 4$
= 52

Note that in these two examples $f \circ g(5) \neq g \circ f(5)$ and therefore composition of functions is **not commutative**:

$$f \circ g \neq g \circ f$$

In general

$$f \circ g(x) = f(g(x))$$

= f(2x - 4)
= (2x - 4)² + 3
= 4x² - 16x + 19

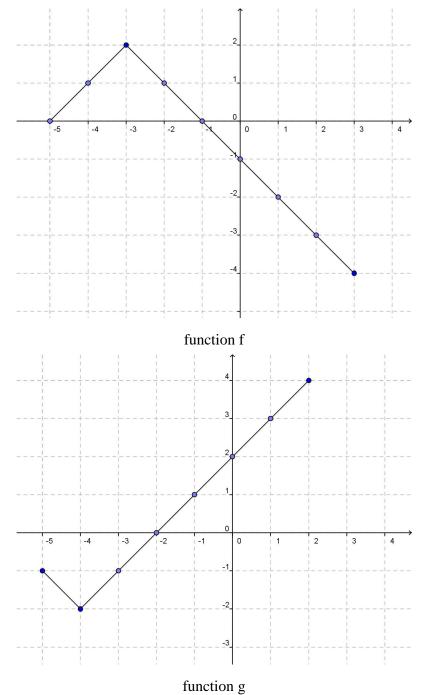
but

$$g \circ f(x) = 2(x^2 + 3) - 4$$

= $2x^2 + 2$

Composition of Functions Defined Graphically

If functions f and g are described graphically, function composition can be done if the graphs are clearly scaled.



Example: Using the graphs above, find $f \circ g(1)$. Solution

$$f \circ g(1) = f(g(1))$$
$$= f(3)$$
$$= -4$$

Composition of Functions defined by a Table

In some cases, functions f and g may be given by a table. The composition of f with g, $f \circ g(x)$ will be defined provided that the range of g (the **inside** function) is a subset of the domain of f (the **outside** function). **Example**: Here's a table which defines two functions, f(x) and g(x).

x	1	2	3	4	5
f(x)	3	1	5	2	4
g(x)	5	3	4	2	1

a.
$$f \circ g(3) = f(g(3)) = f(4) = 2$$

b. $g \circ f(3) = g(f(3)) = g(5) = 1$

Decomposition of Functions

Many of the functions we have seen can be decomposed into a composition of simpler functions. For example, if

$$h(x) = \sqrt{2x+1}$$

then $h = f \circ g$ where

g(x) = 2x + 1 (the "inside" function) and

 $f(x) = \sqrt{x}$ (the "outside" function)

Note that the decomposition of functions may have more than one result. In this example, we could also have

$$g(x) = 2x$$
 and
 $f(x) = \sqrt{x+1}$