Combining Functions

New functions can be formed from old ones in two basic ways:

1. By arithmetic operations

A. Addition

$$
(f+g)(x)=f(x)+g(x)
$$

B. Subtraction

$$
(f-g)(x)=f(x)-g(x)
$$

C. Multiplication

$$
(f \cdot g)(x)=f(x) \cdot g(x)
$$

D. Division

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \text { provided } g(x) \neq 0
$$

Here are some examples

1. Let $f(x)=x^{2}+3$ and $g(x)=2 x-4$. Then

$$
\begin{aligned}
(f-g)(x) & =f(x)-g(x) \\
& =\left(x^{2}+3\right)-(2 x-4) \\
& =x^{2}-2 x+7
\end{aligned}
$$

2. With the same definitions of f, g we have

$$
\frac{f}{g}(4)=\frac{f(4)}{g(4)}=\frac{4^{2}+3}{2 \cdot 4-4}=\frac{19}{4}
$$

2. By composition.

If f, g are functions with ran f a subset of dom g then the composition of f with g is defined by

$$
(f \circ g)(x)=f(g(x))
$$

Examples

1. Let $f(x)=x^{2}+3$ and $g(x)=2 x-4$. Then

$$
\begin{aligned}
f \circ g(5) & =f(g(5)) \\
& =f(2 \cdot 5-4) \\
& =f(6) \\
& =6^{2}+3 \\
& =39
\end{aligned}
$$

2. Using these same functions again we have

$$
\begin{aligned}
g \circ f(5) & =g(f(5)) \\
& =g\left(5^{2}+3\right) \\
& =g(28) \\
& =2 \cdot 28-4 \\
& =52
\end{aligned}
$$

Note that in these two examples $f \circ g(5) \neq g \circ f(5)$ and therefore composition of functions is not commutative:

$$
f \circ g \neq g \circ f
$$

In general

$$
\begin{aligned}
f \circ g(x) & =f(g(x)) \\
& =f(2 x-4) \\
& =(2 x-4)^{2}+3 \\
& =4 x^{2}-16 x+19
\end{aligned}
$$

but

$$
\begin{aligned}
g \circ f(x) & =2\left(x^{2}+3\right)-4 \\
& =2 x^{2}+2
\end{aligned}
$$

Composition of Functions Defined Graphically

If functions f and g are described graphically, function composition can be done if the graphs are clearly scaled.

function g
Example: Using the graphs above, find $f \circ g(1)$.
Solution

$$
\begin{aligned}
f \circ g(1) & =f(g(1)) \\
& =f(3) \\
& =-4
\end{aligned}
$$

Composition of Functions defined by a Table

In some cases, functions f and g may be given by a table. The composition of f with $g, f \circ g(x)$ will be defined provided that the range of g (the inside function) is a subset of the domain of f (the outside function).
Example: Here's a table which defines two functions, $f(x)$ and $g(x)$.

x	1	2	3	4	5
$f(x)$	3	1	5	2	4
$g(x)$	5	3	4	2	1

a. $f \circ g(3)=f(g(3))=f(4)=2$
b. $g \circ f(3)=g(f(3))=g(5)=1$

Decomposition of Functions

Many of the functions we have seen can be decomposed into a composition of simpler functions. For example, if

$$
h(x)=\sqrt{2 x+1}
$$

then $h=f \circ g$ where

$$
\begin{aligned}
& g(x)=2 x+1 \text { (the "inside" function) and } \\
& f(x)=\sqrt{x} \text { (the "outside" function) }
\end{aligned}
$$

Note that the decomposition of functions may have more than one result. In this example, we could also have

$$
\begin{aligned}
g(x) & =2 x \text { and } \\
f(x) & =\sqrt{x+1}
\end{aligned}
$$

