Inverses of Relations and Functions

Definition: If f is a function then the inverse of f, written f^{-1}, is the function obtained by "reversing" the rule of function f.

For instance, if $f(x)=x+5$ then f takes an input x and adds 5 to it to produce an ouput. To "undo" this, we must subtract 5: $f^{-1}(x)=x-5$.
Similarly, the doubling function

$$
f(x)=2 x
$$

is reversed by the "halving" function

$$
f^{-1}(x)=\frac{x}{2}
$$

In general, a function g is the inverse of a function f if

$$
\begin{aligned}
g(f(x)) & =x \text { for all } x \text { in the domain of } f \\
\text { and } f(g(x)) & =x \text { for all } x \text { in the domain of } g
\end{aligned}
$$

Example

Suppose we have a function f defined by

$$
f(x)=2 x-5
$$

and we wish to find its inverse $f^{-1}(x)$. First, replace $f(x)$ with another letter. We will use y :

$$
y=2 x-5
$$

Solve for x in terms of y :

$$
\begin{aligned}
y & =2 x-5 \\
y+5 & =2 x \\
\frac{y+5}{2} & =x
\end{aligned}
$$

This function has x as a function of y, that is, whenever y is input, the output is $\frac{y+5}{2}$. This function is the inverse of function f, written f^{-1}. We will change the letter of the input variable to x and write

$$
f^{-1}(x)=\frac{x+5}{2}
$$

Note that the graph of f and f^{-1} are symmetric about the line $y=x$:

If f^{-1} is the inverse function of f then the composition of f with f^{-1} is the identity function:

$$
f \circ f^{-1}(x)=f\left(f^{-1}(x)\right)=x
$$

and

$$
f^{-1} \circ f(x)=f^{-1}(f(x))=x
$$

Example Using $f(x)=2 x-5$ and $f^{-1}(x)=\frac{x+5}{2}$ we have

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =f\left(\frac{x+5}{2}\right) \\
& =2\left(\frac{x+5}{2}\right)-5 \\
& =x+5-5 \\
& =x .
\end{aligned}
$$

It is also the case in this example that $f^{-1}(f(x))=x$, and you should check this.
Here's an interactive Desmos app (https://www.desmos.com) which illustrates the graph of

$$
f(x)=x^{3}+2
$$

and its inverse

$$
f^{-1}(x)=\sqrt[3]{x-2}
$$

Use the slider to see the symmetry of points on the graph of f and f^{-1}. Note that the x - and y coordinates of the points are exchanged.

Copy and paste this link into your browser:
https://www.desmos.com/calculator/hkffviunw2

