Complex Numbers in Rectangular and Polar Form

To represent complex numbers $x+y i$ geometrically, we use the rectangular coordinate system with the horizontal axis representing the real part and the vertical axis representing the imaginary part of the complex number.

Imaginary axis

We sketch a vector with initial point $(0,0)$ and terminal point $P(x, y)$. The length r of the vector is the absolute value or modulus of the complex number and the angle θ with the positive x-axis is the is called the direction angle or argument of $x+y i$.

Conversions between rectangular and polar form follows the same rules as it does for vectors.

Rectangular to Polar

For a complex number $x+y i$

$$
\begin{gathered}
|x+y i|=r=\sqrt{x^{2}+y^{2}} \\
\tan \theta=\frac{y}{x}, x \neq 0
\end{gathered}
$$

Polar to Rectangular

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

The polar form $r(\cos \theta+i \sin \theta)$ is sometimes abbreviated

$$
r \operatorname{cis} \theta
$$

Example

Convert $-\sqrt{3}+i$ to polar form.

Solution

$x=-\sqrt{3}$ and $y=1$ so that

$$
r=\sqrt{(-\sqrt{3})^{2}+1^{2}}=2
$$

and

$$
\tan \theta=\frac{1}{-\sqrt{3}}=-\frac{\sqrt{3}}{3}
$$

Here the reference angle and for θ is 30°. Since the complex number is in QII, we have

$$
\begin{aligned}
& \theta=180^{\circ}-30^{\circ} \\
& \theta=150^{\circ}
\end{aligned}
$$

So that $-\sqrt{3}+i=2 \operatorname{cis} 150^{\circ}$. In radian mode, we have

$$
-\sqrt{3}+i=2 \operatorname{cis} \frac{5 \pi}{6}
$$

Here's what the conversion looks like using the Math/Complex menu on the TI-83/84 (degree mode)

Example

In the case that $x=0$ or $y=0$, the conversions to polar form lead to quadrant angles.

$$
\begin{aligned}
-8 i & =8 \operatorname{cis} 270^{\circ} \\
-5 & =5 \operatorname{cis} 180^{\circ}
\end{aligned}
$$

Example

Converting polar to rectangular form is straightforward.

$$
\begin{aligned}
4 \operatorname{cis} 240^{\circ} & =4 \cos 240^{\circ}+i \sin 240^{\circ} \\
& =4\left(-\frac{1}{2}\right)+i\left(-\frac{\sqrt{3}}{2}\right) \\
& =-2-2 i \sqrt{3}
\end{aligned}
$$

Note that the i follows an integer or fraction but precedes a radical, an "unwritten rule" of mathematical writing style.

Warning: doing this conversion on the calculator requires radian mode argument and the radicals, of course, give decimal numbers.

Product and Quotient Theorems

The advantage of polar form is that multiplication and division are easier to accomplish.

Product Theorem

$$
\left(r_{1} \operatorname{cis} \theta_{1}\right)\left(r_{2} \operatorname{cis} \theta_{2}\right)=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
$$

Quotient Theorem

$$
\frac{\left(r_{1} \operatorname{cis} \theta_{1}\right)}{\left(r_{2} \operatorname{cis} \theta_{2}\right)}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
$$

Notice that the angle θ behaves in a manner analogous to that of the logarithms of products and quotients.

Example

Find $\left(2 \operatorname{cis} 45^{\circ}\right)\left(3 \operatorname{cis} 135^{\circ}\right)$ and convert the answer to rectangular form.

Solution

$$
\begin{aligned}
\left(2 \operatorname{cis} 45^{\circ}\right)\left(3 \operatorname{cis} 135^{\circ}\right) & =2 \cdot 3 \operatorname{cis}\left(45^{\circ}+135^{\circ}\right) \\
& =6 \operatorname{cis} 180^{\circ}
\end{aligned}
$$

In rectangular form, this answer is -6 .

Example

Find $\frac{10 \operatorname{cis}\left(-60^{\circ}\right)}{5 \operatorname{cis}\left(150^{\circ}\right)}$ and convert the answer to rectangular form.

Solution

$$
\begin{aligned}
\frac{10 \operatorname{cis}\left(-60^{\circ}\right)}{5 \operatorname{cis}\left(150^{\circ}\right)} & =\frac{10}{5} \operatorname{cis}\left(-60^{\circ}-150^{\circ}\right) \\
& =2 \operatorname{cis}\left(-210^{\circ}\right)
\end{aligned}
$$

Converting the polar result gives

$$
\begin{aligned}
2 \operatorname{cis}\left(-210^{\circ}\right) & =2\left(\cos \left(-210^{\circ}\right)+i \sin \left(-210^{\circ}\right)\right. \\
& =2\left(\cos \left(210^{\circ}\right)-i \sin \left(210^{\circ}\right)\right) \\
& =2\left(-\frac{\sqrt{3}}{2}-i\left(-\frac{1}{2}\right)\right) \\
& =-\sqrt{3}+i
\end{aligned}
$$

The advantage of using polar form will become even more pronounced when we calculate powers and roots of complex numbers using DeMoivre's Theorem.

