Examples of Polynomial Function Graphs

$P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}$
The leading coefficient $a_{n} \neq 0$ The constant term a_{0} is the y-intercept.

1. Degree 0 (Constant) $y=a_{0}$. Graph is a horizontal straight line through $\left(0, a_{0}\right)$.
2. Degree 1 (Linear) $y=a_{1} x+a_{0}$. Graph is a straight line with slope a_{1} and y-intercept $\left(0, a_{0}\right)$.
3. Degree 2 (Quadratic) $y=a_{2} x^{2}+a_{1} x+a_{0}$. Graph is a parabola which opens upward if $a_{2}>0$, downward if $a_{2}<0$.
4. Degree 3 (Cubic) $y=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. The graph will move low-to-high $\left(a_{3}>0\right)$ or high-to-low ($a_{3}<0$) with one inflection point and either two or no turning points.
A. Examples:
$y=3 x^{3}-2$

Confirm these graphs with your calculator, being sure to note the graphing window for each.
5. Degree 4 (Quartic) $y=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. The graph of a quartic will either open upward ($a_{4}>0$) or downward $\left(a_{4}<0\right)$ with either 1 or 3 turning points. There a several general types of possibilities for this, and here's some examples.
A. $y=x^{4}-5 x^{2}+4$

6. Degree 5 (Quintic) $y=a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$
A. As in the degree 1 and degree 3 polynomial, the graph of the quintic will move low-to-high $\left(a_{5}>0\right)$ or high-to-low $\left(a_{5}<0\right)$ with up to 4 turning points. Try this example with your calculator and the viewing window.

$$
y=\frac{1}{5} x^{5}-\frac{5}{3} x^{3}+4 x
$$

General patterns for the graphs of polynomial functions

On a large scale, the graph of a polynomial of degree n will resemble the graph of $y=a_{n} x^{n}$.

1. Odd Degree polynomial

In general, the graphs of polynomials of odd degree will move from $-\infty$ to $+\infty$ (low-to-high if $a_{n}>0$) or $+\infty$ to $-\infty$ (high-to-low if $a_{n}<0$).
2. Even Degree polynomial

Graphs of polynomials of even degree will open upward (both ends up if $a_{n}>0$) or open downward (both ends down if $a_{n}<0$).
3. Turning points

A polynomial of degree n will have, at most, $n-1$ turning points. The turning points may not be visible on a large scale.

Graphing tips A zoom decimal window, though it gives the nicest trace values, rarely shows the complete behavior of polynomials of degree 3 or larger. Be prepared to adjust the window to show all possible turning points and end behavior. In some cases, no single window will effectively show all turning points and end behavior.

