Examples of Polynomial Function Graphs

 $P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$

The leading coefficient $a_n \neq 0$ The constant term a_0 is the *y*-intercept.

- **1.** Degree 0 (Constant) $y = a_0$. Graph is a horizontal straight line through $(0, a_0)$.
- **2.** Degree 1 (Linear) $y = a_1x + a_0$. Graph is a straight line with slope a_1 and y-intercept $(0, a_0)$.
- 3. Degree 2 (Quadratic) $y = a_2x^2 + a_1x + a_0$. Graph is a parabola which opens upward if $a_2 > 0$, downward if $a_2 < 0$.
- **4.** Degree 3 (Cubic) $y = a_3x^3 + a_2x^2 + a_1x + a_0$. The graph will move low-to-high $(a_3 > 0)$ or high-to-low $(a_3 < 0)$ with one *inflection point* and either two or no turning points.
 - A. Examples:

Confirm these graphs with your calculator, being sure to note the graphing window for each.

5. **Degree 4** (Quartic) $y = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$. The graph of a quartic will either open upward ($a_4 > 0$) or downward ($a_4 < 0$) with either 1 or 3 turning points. There a several general types of possibilities for this, and here's some examples.

- 6. **Degree 5** (Quintic) $y = a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$
 - **A**. As in the degree 1 and degree 3 polynomial, the graph of the quintic will move low-to-high $(a_5 > 0)$ or high-to-low $(a_5 < 0)$ with up to 4 turning points. Try this example with your calculator and the viewing window.

General patterns for the graphs of polynomial functions

On a large scale, the graph of a polynomial of degree *n* will resemble the graph of $y = a_n x^n$.

1. Odd Degree polynomial

In general, the graphs of polynomials of odd degree will move from $-\infty$ to $+\infty$ (low-to-high if $a_n > 0$) or $+\infty$ to $-\infty$ (high-to-low if $a_n < 0$).

2. Even Degree polynomial

Graphs of polynomials of even degree will open upward (both ends up if $a_n > 0$) or open downward (both ends down if $a_n < 0$).

3. Turning points

A polynomial of degree *n* will have, at most, n - 1 turning points. The turning points may not be visible on a large scale.

Graphing tips A zoom decimal window, though it gives the nicest trace values, rarely shows the complete behavior of polynomials of degree 3 or larger. Be prepared to adjust the window to show all possible turning points and end behavior. In some cases, no single window will effectively show all turning points and end behavior.