Solving Quadratic Equations

$$
a x^{2}+b x+c=0, \quad a \neq 0
$$

Methods for solving:

1. By factoring.
A. First, put the equation in standard form.
B. Then factor the left side
C. Set each factor $=0$
D. Solve each equation
2. By square root method.
A. The solution set of

$$
x^{2}=k
$$

is

$$
\text { S.S. }=\{\sqrt{k},-\sqrt{k}\}
$$

B. If the left side of the equation is not a perfect square, then complete the square using the formula

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}
$$

3. By quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The Discriminant of the Quadratic Equation

$$
a x^{2}+b x+c=0, \quad a \neq 0
$$

is the number

$$
b^{2}-4 a c
$$

. This number tells us about the solutions of the equation. If

1. $b^{2}-4 a c>0$, there are two real solutions
2. $b^{2}-4 a c=0$, there is one double solution
3. $b^{2}-4 a c<0$, there are two complex non-real solutions
4. a, b, c are integers and $b^{2}-4 a c$ is a perfect square, the equation can be solved by factoring

Here's a sample of what the graphs of $y=a x^{2}+b x+c$ when $a>0$ look like:

Examples

Solving Quadratic Equation by Factoring

Solve $x^{2}+x=12$
Solution:

$$
\begin{aligned}
x^{2}+x-12 & =0 \text { place the equation in standard form } \\
(x+4)(x-3) & =0 \text { factor the left side } \\
x+4 & =0 \text { or } x-3=0 \text { set each factor equal to } 0 \\
x & =-4 \text { or } x=3 \text { and solve for } x \\
\text { S.S. } & =\{-4,3\} \text { write the solution set }
\end{aligned}
$$

Solving Quadratic Equations by Square Root Method

1. Solve $x^{2}-8=0$

Solution:

$$
\begin{aligned}
x^{2} & =8 \text { move the constant to the right side } \\
x & = \pm \sqrt{8} \text { take square root of both sides } \\
x & = \pm 2 \sqrt{2} \text { and simplify } \\
\text { S.S. } & =\{ \pm 2 \sqrt{2}\} \text { write the solution set }
\end{aligned}
$$

2. Solve $x^{2}-6 x+7=0$

Solution:

$$
\begin{aligned}
x^{2}-6 x+7 & =0 \\
x^{2}-6 x & =-7 \text { move constant } \\
x^{2}-6 x+9 & =-7+9 \text { complete square and balance equation } \\
(x-3)^{2} & =2 \text { factor and simplify } \\
x-3 & = \pm \sqrt{2} \text { square root of both sides } \\
x & =3 \pm \sqrt{2} \text { solve for } x \\
\text { S.S. } & =\{3 \pm \sqrt{2}\} \text { and write the solution set }
\end{aligned}
$$

3. Solve $2 x^{2}-5 x-6=0$

Solution:

$$
\begin{aligned}
2 x^{2}-5 x-3 & =0 \\
2 x^{2}-5 x & =3 \text { move constant } \\
2\left(x^{2}-\frac{5}{2} x\right) & =3 \text { factor left side } \\
2\left(x^{2}-\frac{5}{2} x+\frac{25}{16}\right) & =3+2 \cdot \frac{25}{16} \text { complete square and balance } \\
2\left(x-\frac{5}{4}\right)^{2} & =\frac{49}{8} \text { factor and simplify } \\
\left(x-\frac{5}{4}\right)^{2} & =\frac{49}{16} \text { divide by } 2 \\
x-\frac{5}{4} & = \pm \frac{7}{4} \text { square root of both sides } \\
x & =\frac{5}{4} \pm \frac{7}{4} \text { isolate } x \\
x & =3 \text { or }-\frac{1}{2} \text { simplify } \\
S . S . & =\left\{3,-\frac{1}{2}\right\} \text { write solution set }
\end{aligned}
$$

Solving Quadratic Equation by the Quadratic Formula

1. Find the solutions of the quadratic equation

$$
2 x^{2}-4 x-1=0
$$

Solution Use the quadratic formula and substitute $a=2, b=4, c=-1$.

$$
\begin{aligned}
x & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4 \cdot 2 \cdot(-1)}}{2 \cdot 2} \\
& =\frac{4 \pm \sqrt{16+8}}{4} \\
& =\frac{4 \pm \sqrt{24}}{4} \text { the discriminant is } 24 \\
& =\frac{4}{4} \pm \frac{2 \sqrt{6}}{4} \text { simplify radical } \\
& =1 \pm \frac{\sqrt{6}}{2}
\end{aligned}
$$

The solution set is

$$
S . S .=\left\{1 \pm \frac{\sqrt{6}}{2}\right\}
$$

2. Find the zeros of the quadratic function

$$
x^{2}+2 x+1
$$

Solution By the quadratic formula, with $a=1, b=2, c=1$

$$
\begin{aligned}
x & =\frac{-2 \pm \sqrt{2^{2}-4 \cdot 1 \cdot 1}}{2 \cdot 1} \\
& =\frac{-2 \pm \sqrt{0}}{2} \text { the discriminant is } 0 \\
& =-1
\end{aligned}
$$

The solution set is

$$
S . S .=\{-1\}
$$

For this quadratic there is only one zero; it is called a double zero or double root.
3. Find the zeros of $x^{2}-4 x+13$.

Solution. By the quadratic formula, with $a=1, b=-4, c=13$

$$
\begin{aligned}
x & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4 \cdot 1 \cdot 13}}{2 \cdot 1} \\
& =\frac{4 \pm \sqrt{16-52}}{2} \\
& =\frac{4 \pm \sqrt{-36}}{2} \text { the discriminant is }-36
\end{aligned}
$$

Note that $\sqrt{-36}=6 i$ is not a real number. Thus, for this quadratic function, there are no real zeros. To complete the solution we must use complex numbers.

$$
\begin{aligned}
& x=\frac{4 \pm 6 i}{2} \\
& x=2 \pm 3 i
\end{aligned}
$$

The solution set is

$$
S . S .=\{2+3 i, 2-3 i\}
$$

In many application problems, an approximate answer is needed.
4. Example: Approximate the solutions to three decimal places:

$$
0.62 x^{2}-4.31 x+2.94=0
$$

Solution: Set up the quadratic formula

$$
x=\frac{-(-4.31) \pm \sqrt{(-4.31)^{2}-4 \cdot 0.62 \cdot 2.94}}{2 \cdot 0.62}
$$

on the calculator home screen to obtain $x=6.184919776$ or $x=0.766693128$.

Here's what one input line the home screen setup looks like:

$$
\left(4.31+\sqrt{ }\left(4.31^{2}-4 * .62 * 2.94\right)\right) /(2 * .62)
$$

Round these off and write the solution set

$$
S . S .=\{6.185,0.767\}
$$

This can also be solved on the graphing screen with \mathbf{Y}_{1} as the quadratic function. Use the [2nd] Calc/ 2.Zero command.

Solving Quadratic Inequalities

$$
\begin{aligned}
& a x^{2}+b x+c<0 \text { or } \\
& a x^{2}+b x+c \leq 0 \text { or } \\
& a x^{2}+b x+c>0 \text { or } \\
& a x^{2}+b x+c \geq 0
\end{aligned}
$$

To find the solution set for these types of inequalities, find the x-intercepts of the graph of

$$
y=a x^{2}+b x+c
$$

and note the interval on the x-axis where the graph is above or below the x-axis. The solution set will be the region between or outside the x-intercepts.
Example: Solve $x^{2}-x-6<0$.
Find the x-intercepts by solving $x^{2}-x-6=0$ to obtain $x=3$ or $x=-2$. These are called critical numbers and are the x-intercepts of the graph of $y=x^{2}-x-6$. Now examine the graph:

The quadratic function $x^{2}-x-6$ is negative when

$$
-2<x<3
$$

Using interval notation, the Solution Set is

$$
S . S .=(-2,3)
$$

Example:To solve

$$
x^{2}-x-6 \geq 0
$$

examine the same graph to obtain

The quadratic function $x^{2}-x-6$ is nonnegative (greater than or equal to zero) when

$$
x \leq-2 \text { or } x \geq 3
$$

Note the use of the word "or" in this description. The word "and" is incorrect because it indicates that both inequalities are true at the same time. A number cannot be less than or equal to -2 at the same time it is greater than or equal to 3 . Here's the solution set in interval notation, using the union symbol.

$$
S . S .=(-\infty,-2] \cup[3, \infty)
$$

Note: The test menu on the TI calculators may also be used to obtain a good visual representation of the S.S.

