Graphs of Rational Functions

A rational function is a function that can be written as the quotient of two polynomial functions, with the degree of the denominator at least 1 . Let us write this as

$$
y=\frac{P(x)}{Q(x)}=\frac{a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}}{b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}}, a_{m} \neq 0, b_{n} \neq 0, n \geq 1
$$

Here is how to find asymptotes.

I. Vertical asymptotes

Set $Q(x)=0$ and solve for x. Each real solution r for which $Q(r)=0$ and $P(r) \neq 0$ gives a vertical asymptote $x=r$.

What if there are no real zeros of $Q(x)$? Then there are no vertical asymptotes of the graph of y.
What if r is a real zero of both $Q(x)$ and $P(x)$? Then the graph of y has a hole at $x=r$, but no vertical asymptote at $x=r$.

II. Horizontal asymptotes

A. If $m<n$ then $y=0$ (the x-axis) is the horizontal asymptote.
B. If $m=n$ then

$$
y=\frac{a_{m}}{b_{n}}
$$

(quotient of leading coefficients) is a horizontal asymptote.
C. If $m>n$ then there is no horizontal asymptote.

III. Oblique or Slant Asymptotes

If $m=n+1$ then there is an oblique asymptote which can be found by performing division of the polynomials. The quotient is a linear polynomial which defines the slant asymptote.

Here are some examples of rational functions:
Example 1. $y=\frac{3}{x-2}$

Note that the vertical line $x=2$ is a vertical asymptote and that $y=0$ (the x -axis) is a horizontal asymptote.

Example 2. $y=\frac{4 x-1}{2 x+4}$

The vertical asymptote is the line $x=-2$ and the horizontal asymptote is the line $y=2$.
Example 3. $y=\frac{x^{3}-2 x^{2}}{x^{2}+1}$

This function has no vertical asymptotes since the equation $x^{2}+1=0$ has no real solutions (its solutions are $x=i$ and $x=-i$). It has no horizontal asymptote since the degree of the numerator is greater than the degree of the denominator. But it does have a slant asymptote: by long division

$$
\frac{x^{3}-2 x^{2}}{x^{2}+1}=x-2+\frac{-x+2}{x^{2}+1}
$$

The oblique (or slant) asymptote is the line

$$
y=x-2
$$

This example illustrates the fact that the graph of a rational function may cross a horizontal or slant asymptote in the "middle" but not at the ends of the graph.

Final Note: To enter these examples into a calculator, you must enclose the numerator and denominator in parentheses. For example 2 above, use

$$
\mathrm{Y}_{1}=(4 \mathrm{X}-1) /(2 \mathrm{X}+4)
$$

Since the calculator is (usually) in connected mode, a zoom standard window may cause the graph to produce a false vertical line near $x=-2$ in older models (TI-83s or TI-82s). This artifact can be eliminated by graphing in dot mode. The newer models of the TI-84, or TI-84s with updated operating systems will graph rational functions correctly.

