## Examples of Solving Trignometric Equations

## Solving by Factoring

Solve $\tan ^{2} x+\tan x-2=0$ over the interval $[0,2 \pi)$.

$$
\begin{aligned}
\tan ^{2} x+\tan x-2 & =0 \\
(\tan x-1)(\tan x+2) & =0 \\
\tan x-1 & =0 \text { or } \tan x+2=0 \\
\tan x & =1 \text { or } \tan x=-2
\end{aligned}
$$

The solutions for $\tan x=1$ over the interval $[0,2 \pi)$ are $x=\frac{\pi}{4}$ and $x=\frac{5 \pi}{4}$.
We will need the help of the calculator to solve $\tan x=-2$. Find $\tan ^{-1}(-2)=-1.1071487$ (radian mode here). This solution is in Q1V but not in the interval [ $0,2 \pi$ ). To find all solutions in the correct interval we must add $\pi$, the period of the tangent function, and then add $2 \pi$.

$$
\begin{aligned}
\pi-1.1071487 & =2.0344 \\
\text { and } 2 \pi-1.1071487 & =5.1760
\end{aligned}
$$

Remember that we are using radian mode. The solution set is

$$
S . S .=\left\{\frac{\pi}{4}, \frac{5 \pi}{4}, 2.0344,5.1760\right\}
$$

## Solving by Squaring

Example: Solve $\tan x+\sqrt{3}=\sec x$ over the interval $[0,2 \pi)$.

$$
\begin{aligned}
(\tan x+\sqrt{3})^{2} & =\sec ^{2} x \text { Square each side } \\
\tan ^{2} x+2 \sqrt{3} \tan x+3 & =\sec ^{2} x \\
\tan ^{2} x+2 \sqrt{3} \tan x+3 & =1+\tan ^{2} x \text { Pythagorean identity } \\
2 \sqrt{3} \tan x & =-2 \text { Subtract } 3+\tan ^{2} x \\
\tan x & =-\frac{2}{2 \sqrt{3}}=-\frac{\sqrt{3}}{3} \text { Divide by } 2 \sqrt{3} \text { and simplify }
\end{aligned}
$$

The two possible solutions from this last equation are in Quadrants II and IV with a reference angle of $\frac{\pi}{6}$ (radians). This gives possible solutions $\frac{5 \pi}{6}$ or $\frac{11 \pi}{6}$. However, since both sides were squared, extraneous solutions (roots) are possible. We must check each proposed solution

$$
\begin{array}{cc}
\tan \frac{5 \pi}{6}+\sqrt{3}=\sec \frac{5 \pi}{6} ? & \tan \frac{11 \pi}{6}+\sqrt{3}=\sec \frac{11 \pi}{6} ? \\
\begin{array}{cc}
\frac{-\sqrt{3}}{3}+\sqrt{3}=-\frac{2 \sqrt{3}}{3} ? & \frac{-\sqrt{3}}{3}+\sqrt{3}=\frac{2 \sqrt{3}}{3} ? \\
\frac{2 \sqrt{3}}{3} \neq-\frac{2 \sqrt{3}}{3} & \frac{2 \sqrt{3}}{3}=\frac{2 \sqrt{3}}{3}
\end{array} \\
\frac{5 \pi}{6} \text { is not a solution } & \frac{11 \pi}{6} \text { is a solution } \\
S . S .=\left\{\frac{11 \pi}{6}\right\}
\end{array}
$$

You can get a visualization of this by graphing

$$
Y_{1}=\tan X+\sqrt{3}-1 / \cos (X)
$$

in the window $[0,2 \pi] \times[-4,4]$ with $\mathrm{Xscl}=\frac{\pi}{6}$ and noting the $x$-intercept at the 11 th scale mark.

