Trig Equations with Half-Angles and Multiple Angles

What follows are illustrations of dealing with trig equations with multiple angles.

Equation with a Half-angle

Example: Solve $2 \sqrt{3} \sin \frac{\theta}{2}=3$ over the interval $\left[0^{\circ}, 360^{\circ}\right)$.
Solution: Write the interval $\left[0^{\circ}, 360^{\circ}\right)$ as an inequality

$$
\begin{aligned}
& 0^{\circ} \leq \theta<360^{\circ} \\
& 0^{\circ} \leq \frac{\theta}{2}<180^{\circ}
\end{aligned}
$$

and set up the equation

$$
\begin{aligned}
2 \sqrt{3} \sin \frac{\theta}{2} & =3 \\
\sin \frac{\theta}{2} & =\frac{3}{2 \sqrt{3}} \\
\sin \frac{\theta}{2} & =\frac{\sqrt{3}}{2} \\
\frac{\theta}{2} & =60^{\circ}, 120^{\circ} \\
\theta & =120^{\circ}, 240^{\circ}
\end{aligned}
$$

and write the solution set

$$
\text { S.S. }=\left\{120^{\circ}, 240^{\circ}\right\}
$$

Equation with a Double Angle

Example: Solve $\cos 2 x=\frac{\sqrt{3}}{2}$ over the interval $[0,2 \pi)$.
Solution: Write the interval

$$
[0,2 \pi)
$$

as the inequality

$$
0 \leq x<2 \pi
$$

and then multiply by 2 to obtain the interval for $2 x$:

$$
0 \leq 2 x<4 \pi
$$

Using radian measure we find all numbers in this interval with cosine value $\frac{\sqrt{3}}{2}$. These are $\frac{\pi}{6}, \frac{11 \pi}{6}, \frac{13 \pi}{6}$, and $\frac{23 \pi}{6}$. So

$$
\begin{aligned}
2 x & =\frac{\pi}{6}, \frac{11 \pi}{6}, \frac{13 \pi}{6}, \frac{23 \pi}{6} \\
x & =\frac{\pi}{12}, \frac{11 \pi}{12}, \frac{13 \pi}{12}, \frac{23 \pi}{12}
\end{aligned}
$$

Write the solution set

$$
S . S .=\left\{\frac{\pi}{12}, \frac{11 \pi}{12}, \frac{13 \pi}{12}, \frac{23 \pi}{12}\right\}
$$

Solving an Equation Using a Double Angle Identity

Example: Solve $\cos 2 x+\cos x=0$ over the interval $[0,2 \pi)$.
Solution: To solve this we must change $\cos 2 x$ using a double-angle identity (see the formula list)

$$
\begin{aligned}
\cos 2 x+\cos x & =0 \\
2 \cos ^{2} x-1+\cos x & =0 \\
2 \cos ^{2} x+\cos x-1 & =0 \\
(2 \cos x-1)(\cos x+1) & =0
\end{aligned}
$$

Now divide the the problem into two parts

$$
\begin{array}{lll}
2 \cos x-1=0 & \text { or } & \cos x+1=0 \\
\cos x=\frac{1}{2} & \text { or } & \cos x=-1 \\
x=\frac{\pi}{3} \text { or } x=\frac{5 \pi}{3} & \text { or } & x=\pi
\end{array}
$$

The solution set is

$$
\text { S.S. }=\left\{\frac{\pi}{3}, \pi, \frac{5 \pi}{3}\right\}
$$

Example: Solve $1-\sin \theta=\cos 2 \theta$ over the interval $\left[0^{\circ}, 360^{\circ}\right.$).
Solution: Replace $\cos 2 \theta$ using a double-angle identity.

$$
\begin{aligned}
1-\sin \theta & =\cos 2 \theta \\
1-\sin \theta & =1-2 \sin ^{2} \theta \\
2 \sin ^{2} \theta-\sin \theta & =0 \\
\sin \theta(2 \sin \theta-1) & =0
\end{aligned}
$$

Divide the problem into two parts

$$
\begin{array}{lll}
\sin \theta=0 & \text { or } & 2 \sin \theta-1=0 \\
\theta=0^{\circ} \text { or } 180^{\circ} & \text { or } & \sin \theta=\frac{1}{2} \\
& \theta=30^{\circ} \text { or } 150^{\circ}
\end{array}
$$

The solution set is

$$
\text { S.S. }=\left\{0^{\circ}, 30^{\circ}, 150^{\circ}, 180^{\circ}\right\}
$$

Solving an Equation Using a Multiple-Angle Identity

Solve $4 \sin \theta \cos \theta=\sqrt{3}$ over the interval $\left[0^{\circ}, 360^{\circ}\right)$.

$$
\begin{aligned}
4 \sin \theta \cos \theta & =\sqrt{3} \\
2(2 \sin \theta \cos \theta) & =\sqrt{3} \\
2 \sin 2 \theta & =\sqrt{3} \\
\sin 2 \theta & =\frac{\sqrt{3}}{2}
\end{aligned}
$$

From the given interval $0^{\circ} \leq \theta<360^{\circ}$, the interval for 2θ is $0^{\circ} \leq 2 \theta<720^{\circ}$.

$$
\begin{aligned}
2 \theta & =60^{\circ}, 120^{\circ}, 420^{\circ}, 480^{\circ} \\
\theta & =30^{\circ}, 60^{\circ}, 210^{\circ}, 240^{\circ} \\
\text { S.S. } & =\left\{30^{\circ}, 60^{\circ}, 210^{\circ}, 240^{\circ}\right\}
\end{aligned}
$$

Since the period of $\sin 2 \theta$ is $\pi=180^{\circ}$, we can represent all solutions in this way:

$$
\text { S.S. }=\left\{30^{\circ}+180^{\circ} n, 60^{\circ}+180^{\circ} n \text {, where } n \text { is any integer }\right\}
$$

Solving an Equation with a Multiple Angle

Solve $\tan 3 x+\sec 3 x=2$ over the interval $[0,2 \pi)$.
Solution: Since we have tangents and secants, squaring both sides will let us express everything in terms of tangent:

$$
\begin{aligned}
\tan 3 x+\sec 3 x & =2 \\
\sec 3 x & =2-\tan 3 x \\
\sec ^{2} 3 x & =(2-\tan 3 x)^{2} \quad \text { square both sides } \\
1+\tan ^{2} 3 x & =4-4 \tan 3 x+\tan ^{2} 3 x \\
-3 & =-4 \tan 3 x \\
\tan 3 x & =\frac{3}{4} \\
3 x & =0.6435 \text { or [Quadrant I] } \\
3 x & =.6435+\pi=3.7851 \text { [Quadrant III] }
\end{aligned}
$$

The solution for $3 x$ must be Quadrants I and III. Since $0 \leq x<2 \pi$, we have $0 \leq 3 x<6 \pi$, and

$$
\begin{aligned}
3 x & =.6435+(n) 2 \pi, \text { where } n=0,1,2 \text { or } \\
3 x & =3.7851+(n) 2 \pi, \text { where } n=0,1,2 \\
x & =0.2145,2.3089,4.4033 \text { or } \\
x & =1.2617,3.3561,5.4505
\end{aligned}
$$

We must test each of these proposed solutions, because they were produced by squaring both sides of the equation, and extraneous roots are possible. The cosine function has period 2π, a multiple of the period of the tangent function (π). It is enough, then, to test $x=.2145$ and $x=1.2617$. You can check these approximations with the calculator to obtain

$$
\tan (3 * 0.2145)+1 / \cos (3 * .2145)=1.999997228
$$

but

$$
\tan (3 * 0.1 .2617)+1 / \cos (3 * .1 .2617)=-.4999961015
$$

We conclude that, rounded off to four decimal places,

$$
\text { S.S. }=\{.2145,2.3089,4.4033\}
$$

You can see this by graphing $\mathrm{Y}_{1}=\tan (3 x)+1 / \cos (3 x)-2$ on your calculator in the Window $[0,2 \pi] \times[-1,1]$
with $\mathrm{Xscl}=1$ and note where the graph (TI-84) crosses the x -axis.

