Trig Equations with Half-Angles and Multiple Angles

What follows are illustrations of dealing with trig equations with multiple angles.

Equation with a Half-angle

Example: Solve $2\sqrt{3} \sin \frac{\theta}{2} = 3$ over the interval $[0^{\circ}, 360^{\circ})$. **Solution**: Write the interval $[0^{\circ}, 360^{\circ})$ as an inequality

$$\begin{array}{ll} 0^{\circ} & \leq \theta < 360^{\circ} \\ 0^{\circ} & \leq \frac{\theta}{2} < 180^{\circ} \end{array}$$

and set up the equation

$$2\sqrt{3} \sin \frac{\theta}{2} = 3$$
$$\sin \frac{\theta}{2} = \frac{3}{2\sqrt{3}}$$
$$\sin \frac{\theta}{2} = \frac{\sqrt{3}}{2}$$
$$\frac{\theta}{2} = 60^{\circ}, 120^{\circ}$$
$$\theta = 120^{\circ}, 240$$

and write the solution set

$$S.S. = \{120^\circ, 240^\circ\}$$

0

Equation with a Double Angle

Example: Solve $\cos 2x = \frac{\sqrt{3}}{2}$ over the interval $[0, 2\pi)$. **Solution**: Write the interval

as the inequality

 $0 \le x < 2\pi$

 $[0, 2\pi)$

 $0 \le 2x < 4\pi$

Using radian measure we find all numbers in this interval with cosine value $\frac{\sqrt{3}}{2}$. These are $\frac{\pi}{6}$, $\frac{11\pi}{6}$, $\frac{13\pi}{6}$, and $\frac{23\pi}{6}$. So

$$2x = \frac{\pi}{6}, \frac{11\pi}{6}, \frac{13\pi}{6}, \frac{23\pi}{6}$$
$$x = \frac{\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{23\pi}{12}$$

Write the solution set

$$S.S. = \left\{ \frac{\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{23\pi}{12} \right\}$$

Solving an Equation Using a Double Angle Identity

Example: Solve $\cos 2x + \cos x = 0$ over the interval $[0, 2\pi)$. **Solution**: To solve this we must change $\cos 2x$ using a double-angle identity (see the formula list)

$$\cos 2x + \cos x = 0$$
$$2\cos^2 x - 1 + \cos x = 0$$
$$2\cos^2 x + \cos x - 1 = 0$$
$$(2\cos x - 1)(\cos x + 1) = 0$$

Now divide the the problem into two parts

$$2\cos x - 1 = 0 \qquad \text{or} \quad \cos x + 1 = 0$$
$$\cos x = \frac{1}{2} \qquad \text{or} \quad \cos x = -1$$
$$x = \frac{\pi}{3} \text{ or } x = \frac{5\pi}{3} \quad \text{or} \quad x = \pi$$

The solution set is

$$S.S. = \left\{\frac{\pi}{3}, \pi, \frac{5\pi}{3}\right\}$$

Example: Solve $1 - \sin \theta = \cos 2\theta$ over the interval $[0^\circ, 360^\circ)$. **Solution**: Replace $\cos 2\theta$ using a double-angle identity.

$$1 - \sin\theta = \cos 2\theta$$
$$1 - \sin\theta = 1 - 2\sin^2\theta$$
$$2\sin^2\theta - \sin\theta = 0$$
$$\sin\theta(2\sin\theta - 1) = 0$$

Divide the problem into two parts

$$\sin\theta = 0 \quad \text{or} \quad 2\sin\theta - 1 = 0$$
$$\theta = 0^{\circ} \text{ or } 180^{\circ} \quad \text{or} \quad \sin\theta = \frac{1}{2}$$
$$\theta = 30^{\circ} \text{ or } 150^{\circ}$$

The solution set is

$$S.S. = \{0^{\circ}, 30^{\circ}, 150^{\circ}, 180^{\circ}\}$$

Solving an Equation Using a Multiple-Angle Identity

Solve $4\sin\theta\cos\theta = \sqrt{3}$ over the interval $[0^\circ, 360^\circ)$.

$$4\sin\theta\cos\theta = \sqrt{3}$$
$$2(2\sin\theta\cos\theta) = \sqrt{3}$$
$$2\sin2\theta = \sqrt{3}$$
$$\sin2\theta = \frac{\sqrt{3}}{2}$$

From the given interval $0^\circ \le \theta < 360^\circ$, the interval for 2θ is $0^\circ \le 2\theta < 720^\circ$.

$$2\theta = 60^{\circ}, 120^{\circ}, 420^{\circ}, 480^{\circ}$$
$$\theta = 30^{\circ}, 60^{\circ}, 210^{\circ}, 240^{\circ}$$
$$S.S. = \{30^{\circ}, 60^{\circ}, 210^{\circ}, 240^{\circ}\}$$

Since the period of $\sin 2\theta$ is $\pi = 180^\circ$, we can represent *all* solutions in this way:

 $S.S. = \{30^{\circ} + 180^{\circ}n, 60^{\circ} + 180^{\circ}n, \text{ where } n \text{ is any integer}\}$

Solving an Equation with a Multiple Angle

Solve $\tan 3x + \sec 3x = 2$ over the interval $[0, 2\pi)$.

Solution: Since we have tangents and secants, squaring both sides will let us express everything in terms of tangent:

$$\tan 3x + \sec 3x = 2$$

$$\sec 3x = 2 - \tan 3x$$

$$\sec^2 3x = (2 - \tan 3x)^2$$
 square both sides

$$1 + \tan^2 3x = 4 - 4\tan 3x + \tan^2 3x$$

$$-3 = -4\tan 3x$$

$$\tan 3x = \frac{3}{4}$$

$$3x = 0.6435 \text{ or [Quadrant I]}$$

$$3x = .6435 + \pi = 3.7851 \text{ [Quadrant III]}$$

The solution for 3x must be Quadrants I and III. Since $0 \le x < 2\pi$, we have $0 \le 3x < 6\pi$, and

 $3x = .6435 + (n)2\pi$, where n = 0, 1, 2 or $3x = 3.7851 + (n)2\pi$, where n = 0, 1, 2 x = 0.2145, 2.3089, 4.4033 or x = 1.2617, 3.3561, 5.4505

We must test each of these proposed solutions, because they were produced by squaring both sides of the equation, and extraneous roots are possible. The cosine function has period 2π , a multiple of the period of the tangent function (π). It is enough, then, to test x = .2145 and x = 1.2617. You can check these approximations with the calculator to obtain

$$\tan(3*0.2145) + 1/\cos(3*.2145) = 1.999997228$$

but

$$\tan(3 * 0.1.2617) + 1/\cos(3 * 1.2617) = -.4999961015$$

We conclude that, rounded off to four decimal places,

$$S.S. = \{.2145, 2.3089, 4.4033\}$$

You can see this by graphing $Y_1 = \tan(3x) + 1/\cos(3x) - 2$ on your calculator in the Window $[0, 2\pi] \times [-1, 1]$

with Xscl = 1 and note where the graph (TI-84) crosses the x-axis.