Vectors: Forms, Notation, and Formulas

A scalar is a mathematical quantity with magnitude only (in physics, mass, pressure or speed are good examples). A vector quantity has magnitude and direction. Displacement, velocity, momentum, force, and acceleration are all vector quantities. Two-dimensional vectors can be represented in three ways.

Geometric

Here we use an arrow to represent a vector. Its length is its **magnitude**, and its direction is indicated by the direction of the arrow.

The vector here can be written **OQ** (bold print) or \overrightarrow{OQ} with an arrow above it. Its **magnitude** (or length) is written |OQ| (absolute value symbols).

Rectangular Notation $\langle a, b \rangle$

A vector may be located in a rectangular coordinate system, as is illustrated here.

The rectangular coordinate notation for this vector is $\mathbf{v} = \langle 6, 3 \rangle$ or $\vec{v} = \langle 6, 3 \rangle$. Note the use of **angle brackets** here.

An alternate notation is the use of two **unit vectors** $\hat{i} = \langle 1, 0 \rangle$ and $\hat{j} = \langle 0, 1 \rangle$ so that

$$\mathbf{v} = 6\hat{i} + 3\hat{j}$$

The "hat" notation, not used in our text, is to indicate a unit vector, a vector whose magnitude (length) is 1.

Polar Notation $\langle r \angle \theta \rangle$

In this notation we specify a vector's magnitude $r, r \ge 0$, and its angle θ with the positive x-axis, $0^\circ \le \theta < 360^\circ$. In the illustration above, $r \approx 6.7$ and $\theta \approx 27^\circ$ so that we can write

$$\vec{v} = \langle 6.7 \angle 27^{\circ} \rangle$$

Conversions Between Forms

Rectangular to Polar

If $\mathbf{v} = \langle a, b \rangle$ then

$$|\mathbf{v}| = \sqrt{a^2 + b^2}$$
 and
 $\tan \theta = \frac{b}{a}, a \neq 0$, and (a, b) locates the quadrant of θ
in $\theta = 90^\circ$. If $a = 0$ and $b < 0$ then $\theta = 270^\circ$

If a = 0 and b > 0, then $\theta = 90^{\circ}$. If a = 0 and b < 0, then $\theta = 270^{\circ}$.

Polar to Rectangular

If $\mathbf{v} = \langle r \angle \theta \rangle$ then

$$\mathbf{v} = \langle r\cos\theta, r\sin\theta \rangle$$

Vector Operations

Scalar Multiplication

Geometrically, a scalar multiplier k > 0 can change the length of the vector but not its direction. If k < 0, then the scalar product will "reverse" the direction by 180°.

In rectangular form, if k is a scalar then

$$k\langle a,b\rangle = \langle ka,kb\rangle$$

In the case of a polar form vector

$$k\langle r \angle \theta \rangle = \begin{cases} \langle kr \angle \theta \rangle & \text{if } k \ge 0\\ \langle |kr| \angle \theta \pm 180^{\circ} \rangle & \text{if } k < 0 \end{cases}$$

In the case where k < 0, choose $\theta + 180^{\circ}$ if $0^{\circ} \le \theta < 180^{\circ}$. Choose $\theta - 180^{\circ}$ if $180^{\circ} \le \theta < 360^{\circ}$

Vector Addition

In geometric form, vectors are added by the tip-to-tail or parallelogram method.

In rectangular form, if $\mathbf{u} = \langle a, b \rangle$ and $\mathbf{v} = \langle c, d \rangle$ then

$$\mathbf{u} + \mathbf{v} = \langle a + c, b + d \rangle$$

It's easy in rectangular coordinates. The sum of two vectors is called the **resultant**.

- In polar coordinates there are two approaches, depending on the information given.
- 1. Convert polar form vectors to rectangular coordinates, add, and then convert back to polar coordinates.
- 2. If the magnitudes of the two vectors and the angle between is given (but not the directions of each vector), then a triangle sketch with a Law of Cosines solution is used.

Vector Dot Product

If $\mathbf{u} = \langle a, b \rangle$ and $\mathbf{v} = \langle c, d \rangle$ then the **dot product** of \mathbf{u} and \mathbf{v} is

$$\mathbf{u} \cdot \mathbf{v} = ac + bd$$

The dot product may be positive real number, 0, or a negative real number.

If the magnitudes of the two vectors are known and the angle θ between them is known, then

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

This last formula can be used to find the angle between two vectors whose rectangular forms are given

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$$