Worksheet for Rational Functions

Write the rational function as the quotient of two polynomials, each in standard form.
$f(x)=\frac{P(x)}{Q(x)}=\frac{a_{n} x^{n}+\cdots+a_{0}}{b_{m} x^{m}+\cdots+b_{0}}$

1. Domain: solve the equation $Q(x)=0$. Each real number solution is a number excluded from the domain of the rational function.

Answer: $x=$ \qquad
A. Are there any real solutions? \qquad (yes/no) If yes, write the domain below and then go to Part 2 Intercepts and Holes. If not, skip to part 1B.

Domain $=\{x \mid x$ is a real number and $x \neq\}$
B. Are all the zeros of $Q(x)$ complex (non-real) numbers? \qquad (yes/no) If yes, then

Domain $=(-\infty, \infty)=$ the set of all real numbers
2. Intercepts and Holes: Solve the equation $P(x)=0$ for x, and then list the real number zeros of $P(x)$.

Answer: $x=$ \qquad
A. List the numbers you have found that are in the domain of the rational function (they are not excluded). Each one of these gives an x-intercept for the graph.
x - intercept(s) at $x=$ \qquad ("None" is possible)
B. List any numbers that appear in both lists in Part 1 and Part 2-they are zeros of both $P(x)$ and $Q(x)$. At each of these value(s) of x, there will be a hole in the graph.

The graph has a hole/holes at $x=$ \qquad ("None" is possible)
C. Is $x=0$ in the domain of the rational function (not excluded in Part 1)? \qquad (yes/no) If yes, then $b_{0} \neq 0$ and the y-intercept is $y=\frac{a_{0}}{b_{0}}$.
$y-$ intercept at $y=$ \qquad ("None" is possible)
3. Vertical asymptotes: The graph of the rational function will have a vertical asymptote line through each zero of $Q(x)$ that is not the location of a hole:

Vertical asymptotes are at $x=$ \qquad (there may be more than one V.A.)
4. Horizontal Asymptote: Identify the degree of the numerator and denominator polynomials:

Degree of $P(x)=m=$ \qquad
Degree of $Q(x)=n=$ \qquad
A. Is $m<n$? \qquad (yes/no) If yes, then write $y=0$ as the horizontal asymptote below.
B. Is $m=n$? \qquad (yes/no) If yes, write $y=\frac{a_{m}}{b_{n}}$ [quotient of leading coefficients; simplify this fraction] as the horizontal asymptote.
C. Is $m>n$? \qquad (yes/no) If yes, write "None" in the space for horizontal asymptote.

Horizontal Asymptote: \qquad
5. Oblique Asymptote: Is $m=n+1$? \qquad (yes/no)

If the answer is no, then the analysis is complete. Write "None" in the blank, and you are ready to sketch a graph.
If the answer is yes, then you must use division to re-write the rational function in the form

$$
\frac{P(x)}{Q(x)}=a x+b+\frac{R(x)}{Q(x)}
$$

The remainder $R(x)$ is a polynomial whose degree is less than n.
The line $y=a x+b$ is the oblique asymptote. Write it here (or "None")
Oblique Asymptote: \qquad
6. Graph: sketch asymptote lines as dotted lines (except the axes), and sketch the graph using an appropriate scale. Here is a zoom standard window.

