Transformations of Graphs

Suppose we know what the graph of $y=f(x)$ looks like. If $c>0$, then we can determine the graph that results when we define some new functions in terms of c, x, and $f(x)$.

Type of Transformation	To Graph	Do this to the graph of $y=f(x)$
Horizontal Translation	$y=f(x-c)$	Shift the graph right c units
	$y=f(x+c)$	Shift the graph left c units
Vertical Translation	$y=f(x)+c$	Shift the graph $u p c$ units
	$y=f(x)-c$	Shift the graph down c units
Vertical Stretch/Squeeze factor c	$y=c f(x)$	Stretch $(c>1)$ or squeeze $(c<1)$ the graph from the x-axis
	$y=-c f(x)$	and reflect the graph about the x-axis
Horizontal Stretch/Squeeze factor $\frac{1}{c}$	$y=f(c x)$	Stretch $\left(\frac{1}{c}>1\right)$ or squeeze $\left(\frac{1}{c}<1\right)$ the graph from the y-axis
Absolute Value	$y=f(-c x)$	and reflect the graph about the y-axis

