Transformations of Graphs

Suppose we know what the graph of y = f(x) looks like. If c > 0, then we can determine the graph that results when we define some new functions in terms of c, x, and f(x).

Type of Transformation	To Graph	Do this to the graph of $y = f(x)$
Horizontal Translation	y = f(x - c)	Shift the graph <i>right c</i> units
	y = f(x+c)	Shift the graph <i>left c</i> units
Vertical Translation	y = f(x) + c	Shift the graph <i>up c</i> units
	y = f(x) - c	Shift the graph <i>down c</i> units
Vertical Stretch/Squeeze	y = cf(x)	Stretch ($c > 1$) or squeeze ($c < 1$)
factor c		the graph from the <i>x</i> -axis
	y = -cf(x)	and reflect the graph about the <i>x</i> -axis
Horizontal Stretch/Squeeze	y = f(cx)	Stretch $\left(\frac{1}{c} > 1\right)$ or squeeze $\left(\frac{1}{c} < 1\right)$
factor $\frac{1}{c}$		the graph from the <i>y</i> -axis
	y = f(-cx)	and reflect the graph about the y-axis
Absolute Value	y = f(x)	Reflect the part of the graph which
		is below the <i>x</i> -axis about the <i>x</i> -axis