To Log Or Not To Log

Peter White
Tarleton State University

March 9, 2015

Least Squares Linear Regression

- Used to fit functions to data.
- College Algebra.
- Matrix and Linear Algebra.
- Mutivariable Calculus.
- Numerical Analysis and Approximation Theory.

Linearizion of Models

$$
\begin{gathered}
y=A x^{r} \Leftrightarrow \ln (y)=r \ln (x)+\ln (A) \\
y=C e^{k x} \Leftrightarrow \ln (y)=k x+\ln (C)
\end{gathered}
$$

Note: Each model has two parameters.

Data

Note: One of the data points is $(0,0)$.

Quadratic Polynomial Fit: $y=a x^{2}+b x$

Power Function Fit: $y=A x^{r}$

Power Function Fit Using Log-Log (Power-regression in Modern Calculators)

Power Function Fit Using Multivariable Calculus (Levenberg-Marquardt)

$$
\begin{aligned}
& y(x)=0.00612061 x^{5.72753} \\
& \sum\left[y_{i}-y\left(x_{i}\right)\right]^{2}=1.84181
\end{aligned}
$$

Exponential Function Fit: $y=C e^{k x}$

Exponential Function Fit Using Semi-Log

 (Exponential-regression in Modern Calculators)

$$
\begin{gathered}
y(x)=0.050496 e^{1.44618 x} \\
\sum\left[y_{i}-y\left(x_{i}\right)\right]^{2}=0.0325555
\end{gathered}
$$

Exponential Function Fit Using Multivariable Calculus (Levenberg-Marquardt)

$$
\begin{gathered}
y(x)=0.0501896 e^{1.44856 x} \\
\sum\left[y_{i}-y\left(x_{i}\right)\right]^{2}=0.00420048
\end{gathered}
$$

Conclusion

- Linearizing using Log's is easy to teach and implement.
- Using Log's can lead to egregious errors.
- Levenberg-Marquardt method gives much more accurate results for non-linear models and does not require the use of logarithms.

Copies of the talk and implimentation of all methods shown (using Mathematica) can be found at http://faculty.tarleton.edu/white/

