5. Series Solutions of Second Order, Linear Equations

3. Series Solutions Near an Ordinary Point, Part II

Consider the differential equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 .
$$

In the previous section we assumed a series solution of the form $y=\phi(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. For existence of a solution (from chapter 3) we need $p=Q / P$ and $q=R / P$ to be continuous on an open interval containing x_{0}. Unfortunately, this is not sufficient to guaranty that we have a power series solution that converges with a positive radius of convergence. To have this, we need a stronger condition.

Definition: $\not \phi(x)$ is analytic at x_{0} if it has a power series centered at x_{0} with a positive radius of convergence
This concept of analytic really comes from Complex Analysis, but we will go with the above definition. For example, the common functions like polynomials, \sin , \cos, and e^{x} are analytic for all real numbers. The function $\phi(x)=\sqrt[3]{x}$ is continuous at zero, but not analytic.

Theorem 5.3.1 basically says that Q / R and R / P must be analytic in order to guaranty a power series solution.

So What ...

Recall that Taylor Series are given by $\phi(x)=\phi\left(x_{0}\right)+\phi^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\ldots+\frac{\phi^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\ldots$ We can thin of this in another way by saying that if we find a power series solution for a differential equation and call it ϕ as above, then we also know that $\phi^{(n)}\left(x_{0}\right)=n!a_{n}$

Example: If $y^{\prime \prime}+\boldsymbol{e}^{x} y^{\prime}+y=0$, with $y(0)=2$ and $y^{\prime}(0)=1$ has a power series solution, $\phi(x)$, then find $\phi^{\prime}(0), \phi^{\prime \prime}(0)$, and $\phi^{(5)}(0)$.
Solution: assume a power series solution $y=\phi(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. The center is at zero b / c of the IC's. We then need to determine a_{1}, a_{2}, and a_{5} in order to answer the question asked. Note that the IC's give us that $a_{0}=2$ and $a_{1}=1$, so we already have that

$$
\phi^{\prime}(0)=1!a_{1}=1 .
$$

Now let's use Mathematica to find the first few coefficients for the power series solution.

```
\(\ln [1]==\boldsymbol{y}\left[x_{-}\right]=\operatorname{Sum}\left[a_{n} * x^{n},\{n, 0,7\}\right]\)
Out[1] \(=a_{\theta}+x a_{1}+x^{2} a_{2}+x^{3} a_{3}+x^{4} a_{4}+x^{5} a_{5}+x^{6} a_{6}+x^{7} a_{7}\)
```

Why stop at $n=7$? We only need up to a_{5}, so stopping at $n=5$ would work, but in this example, how to get more of the coefficients will be demonstrated. We will also need the first few terms of the power series for \boldsymbol{e}^{x}
$\ln [2]:=\operatorname{etothex}\left[x_{-}\right]=\operatorname{Normal}\left[S e r i e s\left[e^{x},\{x, 0,7\}\right]\right]$
Out $[2]=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}$
Now plug into the differential equation. The right hand side of the equation is

```
\(\ln [3]:=\operatorname{rhs}\left[x_{-}\right]=y ' \quad[x]+\) etothex \([x] * y '[x]+y[x]\)
Out [3] \(=a_{8}+x a_{1}+2 a_{2}+x^{2} a_{2}+6 x a_{3}+x^{3} a_{3}+12 x^{2} a_{4}+x^{4} a_{4}+20 x^{3} a_{5}+x^{5} a_{5}+30 x^{4} a_{6}+x^{6} a_{6}+42 x^{5} a_{7}+x^{7} a_{7}+\)
    \(\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}\right)\left(a_{1}+2 x a_{2}+3 x^{2} a_{3}+4 x^{3} a_{4}+5 x^{4} a_{5}+6 x^{5} a_{6}+7 x^{6} a_{7}\right)\)
```

Note that you would need to expand (via extended FOIL) the multiplication of $e^{x} y^{\prime}[x]$. Now we need to isolate the various coefficients of powers of x and set them to zero (since the left hand side is the zero function). For instance, the constant coefficient on the right is given by
$\ln [4]:=$ Coefficient [rhs [x], $x, 0]$
$O u t[4]=a_{0}+a_{1}+2 a_{2}$
The coefficient of x on the right is given by

$$
\begin{aligned}
& \ln [5]:=\text { Coefficient[rhs }[\mathbf{x}], \mathbf{x}, \mathbf{1}] \\
& \text { Out[5]= } 2 a_{1}+2 a_{2}+6 a_{3}
\end{aligned}
$$

To get all of the coefficients on the right we could use

$$
\begin{aligned}
\operatorname{In}[6]:= & \text { CoefficientList [rhs [x], x] } \\
\text { Out[6] }= & \left\{a_{0}+a_{1}+2 a_{2}, 2 a_{1}+2 a_{2}+6 a_{3}, \frac{a_{1}}{2}+3 a_{2}+3 a_{3}+12 a_{4},\right. \\
& \frac{a_{1}}{6}+a_{2}+4 a_{3}+4 a_{4}+20 a_{5}, \frac{a_{1}}{24}+\frac{a_{2}}{3}+\frac{3 a_{3}}{2}+5 a_{4}+5 a_{5}+30 a_{6}, \\
& \frac{a_{1}}{120}+\frac{a_{2}}{12}+\frac{a_{3}}{2}+2 a_{4}+6 a_{5}+6 a_{6}+42 a_{7}, \frac{a_{1}}{720}+\frac{a_{2}}{60}+\frac{a_{3}}{8}+\frac{2 a_{4}}{3}+\frac{5 a_{5}}{2}+7 a_{6}+7 a_{7}, \\
& \frac{a_{1}}{5040}+\frac{a_{2}}{360}+\frac{a_{3}}{40}+\frac{a_{4}}{6}+\frac{5 a_{5}}{6}+3 a_{6}+8 a_{7}, \frac{a_{2}}{2520}+\frac{a_{3}}{240}+\frac{a_{4}}{30}+\frac{5 a_{5}}{24}+a_{6}+\frac{7 a_{7}}{2}, \\
& \left.\frac{a_{3}}{1680}+\frac{a_{4}}{180}+\frac{a_{5}}{24}+\frac{a_{6}}{4}+\frac{7 a_{7}}{6}, \frac{a_{4}}{1260}+\frac{a_{5}}{144}+\frac{a_{6}}{20}+\frac{7 a_{7}}{24}, \frac{a_{5}}{1008}+\frac{a_{6}}{120}+\frac{7 a_{7}}{120}, \frac{a_{6}}{840}+\frac{7 a_{7}}{720}, \frac{a_{7}}{720}\right\}
\end{aligned}
$$

So now let's answer the question by finding the values for the a's. First, we know from the IC's that

$$
\begin{aligned}
& \ln [7]:= a_{0} \\
&=2 \\
& a_{1}=1
\end{aligned}
$$

Out $[7]=2$
Out $[8]=1$
So now we get:

$$
\begin{aligned}
& \ln [9]:=\text { Solve }\left[a_{0}+a_{1}+2 a_{2}=\mathbf{0}, a_{2}\right] \\
& \text { Out[9] }=\left\{\left\{a_{2} \rightarrow-\frac{3}{2}\right\}\right\} \\
& \ln [10]:=a_{2}=-\mathbf{3} / \mathbf{2} \\
& \text { Out[10] }=-\frac{3}{2} \\
& \ln [11]:=\text { Solve }\left[2 a_{1}+2 a_{2}+6 a_{3}=\mathbf{0}, a_{3}\right] \\
& \text { Out[11] }=\left\{\left\{a_{3} \rightarrow \frac{1}{6}\right\}\right\} \\
& \ln [12]:=a_{3}=1 / 6 \\
& \text { Out[12] }=\frac{1}{6} \\
& \ln [13]:=\text { Solve }\left[\frac{a_{1}}{2}+3 a_{2}+3 a_{3}+12 a_{4}=0, a_{4}\right] \\
& \text { Out[13]= }\left\{\left\{a_{4} \rightarrow \frac{7}{24}\right\}\right\} \\
& \ln [14]:=a_{4}=7 / 24 \\
& \text { Out[14]]= } \frac{7}{24}
\end{aligned}
$$

$$
\begin{aligned}
& \ln [15]:=\text { Solve }\left[\frac{a_{1}}{6}+a_{2}+\mathbf{4} \mathbf{a}_{\mathbf{3}}+\mathbf{4} \mathbf{a}_{\mathbf{4}}+20 \mathbf{a}_{\mathbf{5}}=\mathbf{0}, \mathbf{a}_{\mathbf{5}}\right] \\
& \text { Out[15] }=\left\{\left\{a_{5} \rightarrow-\frac{1}{40}\right\}\right\} \\
& \ln [16]:=a_{\mathbf{5}}=-\mathbf{- 1} / \mathbf{4 0} \\
& \text { Out[16] }=-\frac{1}{40}
\end{aligned}
$$

So, we get that $\phi^{\prime \prime}(0)=2!a_{2}$ and $\phi^{(5)}(0)=5!a_{5}$:

$$
\begin{aligned}
\ln [17]:= & 2!* a_{2} \\
& 5!* a_{5}
\end{aligned}
$$

Out[17]= -3
Out[18]= -3

$$
\phi^{\prime}(0)=1, \phi^{\prime \prime}(0)=-3 \text { and } \phi^{(5)}(0)=-3 .
$$

Example 2: $y^{\prime \prime}+3 x y^{\prime}-\log [x] y=0$, with $y(1)=3$ and $y^{\prime}(1)=-4$. Find the first 5 coefficients of the power series solution centered at 1 (b/c of the IC's).

Solution: First we need to mathematically manipulate the DE so that everything is "centered" at 0 . Let $t=x-1$ or similarly let $u(x+1)=y(x)$, then the IVP become $u^{\prime \prime}+3(t+1) u^{\prime}-\log [t+1] u=0$ with $u(0)=3$ and $u^{\prime}(0)=-4$. Then the power series solution centered at 1 for y and the power series solution centered at 0 for u have the same coefficients, so...

To clear the values of the $a_{n}{ }^{\prime} s$ appears to be difficult. We could quit the kernel, but instead use a different letter.

$$
\begin{aligned}
& \ln [19]:=\mathbf{u}\left[\mathbf{t}_{-}\right]=\operatorname{Sum}\left[\mathbf{b}_{\mathbf{n}} \mathbf{t}^{\mathbf{n}},\{\mathbf{n}, \mathbf{0}, \mathbf{6}\}\right] \\
& R\left[t _\right]=\operatorname{Normal}[\operatorname{Series}[\log [t+1],\{t, 0,6\}]] \\
& \text { Out[19] }=b_{0}+t b_{1}+t^{2} b_{2}+t^{3} b_{3}+t^{4} b_{4}+t^{5} b_{5}+t^{6} b_{6} \\
& \text { Out[20] }=t-\frac{t^{2}}{2}+\frac{t^{3}}{3}-\frac{t^{4}}{4}+\frac{t^{5}}{5}-\frac{t^{6}}{6} \\
& \ln [21]:=\operatorname{rhs}\left[x_{-}\right]=\mathbf{u}^{\prime} \quad[\mathrm{t}]+\mathbf{3}(\mathrm{t}+\mathbf{1}) \mathbf{u}^{\prime}[\mathrm{t}]-\mathrm{R}[\mathrm{t}] * \mathbf{u}[\mathrm{t}] \\
& \text { Out[21] }=2 b_{2}+6 t b_{3}+12 t^{2} b_{4}+20 t^{3} b_{5}+30 t^{4} b_{6}+3(1+t)\left(b_{1}+2 t b_{2}+3 t^{2} b_{3}+4 t^{3} b_{4}+5 t^{4} b_{5}+6 t^{5} b_{6}\right)- \\
& \left(t-\frac{t^{2}}{2}+\frac{t^{3}}{3}-\frac{t^{4}}{4}+\frac{t^{5}}{5}-\frac{t^{6}}{6}\right)\left(b_{0}+t b_{1}+t^{2} b_{2}+t^{3} b_{3}+t^{4} b_{4}+t^{5} b_{5}+t^{6} b_{6}\right) \\
& \text { In[22]:= Coefficient [rhs[t], } t, 0] \\
& \text { Out[22]= } 3 b_{1}+2 b_{2} \\
& \text { In[23]:= Coefficient [rhs[t], } t, 1] \\
& \text { Out[23]= }-b_{0}+3 b_{1}+6 b_{2}+6 b_{3} \\
& \ln [24]:=\text { Coefficient [rhs[t], t, 2] } \\
& \text { Out[24]= } \frac{b_{0}}{2}-b_{1}+6 b_{2}+9 b_{3}+12 b_{4}
\end{aligned}
$$

Looking at the IC's, we have

```
\(\ln [25]:=\mathbf{b}_{\boldsymbol{0}}=\mathbf{3}\)
    \(b_{1}=-4\)
    Solve [ \(3 b_{1}+2 b_{2}=0, b_{2}\) ]
Out[25]= 3
Out[26]= -4
Out[27] \(=\left\{\left\{\boldsymbol{b}_{2} \rightarrow \boldsymbol{6}\right\}\right\}\)
\(\ln [28]:=\quad \mathbf{b}_{\mathbf{2}}=\mathbf{6}\);
    Solve \(\left[-b_{0}+3 b_{1}+6 b_{2}+6 b_{3}=0, b_{3}\right]\)
Out[29] \(=\left\{\left\{\mathrm{b}_{3} \rightarrow-\frac{7}{2}\right\}\right\}\)
\(\ln [30]:=\quad \mathbf{b}_{\mathbf{3}}=\mathbf{- 7} / \mathbf{2}\);
    Solve \(\left[\frac{b_{0}}{2}-b_{1}+6 b_{2}+9 b_{3}+12 b_{4}=0, b_{4}\right]\)
Out[31] \(=\left\{\left\{\mathrm{b}_{4} \rightarrow-\frac{5}{6}\right\}\right\}\)
```

So the first 5 coefficients are:

$$
b_{0}=3, b_{1}=-4, b_{2}=6, b_{3}=-7 / 2, \text { and } b_{4}=-5 / 6 .
$$

