Preliminaries and Error Analysis

Dr. White

Chapter 1: Preliminaries and Error Analysis

Peter W. White
white@tarleton.edu
Department of Mathematics
Tarleton State University

Fall 2018 / Numerical Analysis

Chapter 1:
Preliminaries and
Error Analysis
Dr. White

Review:
Prerequisite Mathematics

Round-off Errors and Computer Arithmetic

Algorithms and Convergence

Introduction to Matlab

Overview

Review: Prerequisite Mathematics

Round-off Errors and Computer Arithmetic

Algorithms and Convergence

Introduction to Matlab

Chapter 1:

We All Remember Calculus

- Derivatives: limit definition, sum and difference rule, product rule, quotient rule, power rule and chain rule.
- Derivatives: instantaneous rates of change, related rates, differentials, slopes of tangents.
- Integrals: Riemann Sums, anti-derivatives, definite integrals, improper integrals.
- Taylor Series: Taylor polynomials, remainder formula, radius of convergence.

Taylor Series

Theorem 1

Let I be an open interval centered at a. If $f \in C^{n+1}(I)$, then

$$
f(x)=P_{n}(x)+R_{n}(x)
$$

where

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

is the $n^{\text {th }}$-degree Taylor Polynomial centered at a and

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}
$$

for some ξ between x and a is the remainder.

Chapter 1:

Dr. White

Example: Taylor Series

Example 2

Find the Taylor Polynomial centered at $a=1$ that approximates $f(x)=\ln (x)$ accurate to three decimal digits on the interval $\left(\frac{1}{2}, \frac{3}{2}\right)$.

Example 3

Establish a theoretical error bound for $P_{3}(x)$ centered at $a=0$ in approximating $f(x)=\sin (x)$ on the interval $\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$.

Chapter 1:

Dr. White

What Is Numerical Analysis?

Definition 4
Numerical Analysis is the branch of mathematics that deals with the development and use of numerical methods for approximating the solutions of problems.

Definition 5
A numerical method is a complete and unambiguous set of procedures for the solution of a problem, together with computable error estimates.

Chapter 1:
Preliminaries and
Error Analysis
Dr. White

Review:

Prerequisite Mathematics

Homework

Homework assignment section 1.1, due: TBA

Chapter 1:
Preliminaries and
Error Analysis
Dr. White

Review:

Prerequisite

Overview

Review: Prerequisite Mathematics

Round-off Errors and Computer Arithmetic

Algorithms and Convergence

Introduction to Matlab

Chapter 1:

What is Round-off Error

Definition 6
Round-off Error is the difference between an approximation of a number used in computation and its exact (correct) value.

Example 7

π is irrational. Thus, π cannot be written in decimal form. But we can approximate π out to say six decimal places by 3.141593 with a round-off error bounded by 5×10^{-7}.

Absolute and Relative Error

Definition 8

Let p be an exact number and \hat{p} be an approximation to
p. Then the absolute error in the approximation is given
by $|p-\hat{p}|$ and the relative error is given by $\left|\frac{p-\hat{p}}{p}\right|$.
Example 9
Find the absolute and relative error when $p=1,005,862$ and $\hat{p}=1,000,000$.

Chapter 1:

Binary Machine Numbers

Definition 10

A binary number system represents a signed floating-point number as $(-1)^{s} 2^{c-d}(1+f)$ where s is the sign bit, c is the n-bit characteristic, f is the m-bit mantissa and $d=2^{n-1}-1$. The binary number with all bits set to 0 is zero.

Example 11

In a one byte floating-point number system with a 3 bit characteristic and a 4 bit mantissa, then the binary number $01001011(s=0, c=100$, and $f=1011)$ is 3.375 in bas 10. What are the largest and smallest positive numbers that can be represented in this system?

Chapter 1:

Dr. White

Underflow and Overflow

- Underflow - a number smaller than the smallest representable number is set to zero.
- Overflow - a number larger than the largest representable number causes problems.

Repeated subtraction or division could cause underflow. Repeated addition or multiplication could cause overflow.

Chapter 1:
Preliminaries and Error Analysis

Dr. White

Review:

Prerequisite Mathematics

Round-off Errors and Computer Arithmetic

Algorithms and Convergence

Introduction to Matlab

Addition (in base 10)

Example 12
Add the following three numbers using a " 3 -digit" calculater: $1.08,9.59 \times 10^{-3}$, and 9.03×10^{-3}.

Significant Digits

Definition 13

The number \hat{p} is said to approximate p to t significant digits if t is the largest non-negative integer for which

$$
\left|\frac{p-\hat{p}}{p}\right|<5 \times 10^{-t}
$$

Example 14
Let $p=\pi$ and $\hat{p}=3.141$, then

$$
\left|\frac{p-\hat{p}}{p}\right| \approx 5.07 \times 10^{-4}<5 \times 10^{-3}
$$

So $t=3$.

Chapter 1:

Significant Digits II

Example 15
$p=0 . d_{1} d_{2} d_{3} \ldots d_{k} d_{k+1} d_{k+2} \ldots \times 10^{n}$
$\hat{p}=0 . d_{1} d_{2} d_{3} \ldots d_{k} \times 10^{n}$
then $|p-\hat{p}|=0 . d_{k+1} d_{k+2} d_{k+3} \times 10^{n-k}$ and

$$
\left|\frac{p-\hat{p}}{p}\right|=\frac{0 . d_{k+1} d_{k+2} d_{k+3} \times 10^{n-k}}{0 \cdot d_{1} d_{2} d_{3} \times 10^{n}}
$$

Since the minimum value of d_{1} is 1 and the maximum value of d_{k+1} is 9 , then

$$
\left|\frac{p-\hat{p}}{p}\right| \leq \frac{1}{0.1} \times 10^{-k}=10^{-k+1}
$$

Similarly, k digit rounding produces a relative error bounded by $0.5 \times 10^{-k+1}$. So $k-1$ significant digits.

Operations and Errors

Do the mathematical operations,,$+- \times$, and \div magnify error?
Suppose x and y are exact values represented in a machine by $x+\Delta x$ and $y+\Delta y$. Let $S=x+y$, $M=x-y, T=x y$, and $Q=\frac{x}{y}$. In the machine these are represented by $S+\Delta S, M+\Delta M, T+\Delta T$, and $Q+\Delta Q$ where

$$
\begin{aligned}
& \Delta S \approx d S=d x+d y \approx \Delta x+\Delta y \\
& \Delta M \approx d M=d x-d y \approx \Delta x-\Delta y \\
& \Delta T \approx d T=x d y+y d x \approx x \Delta y+y \Delta x, \\
& \Delta Q \approx d Q=\frac{y d x-x d y}{y^{2}} \approx \frac{\Delta x}{y}-\frac{x \Delta y}{y^{2}} .
\end{aligned}
$$

Operations and Errors (Answer)

ΔS and ΔM are of the same size as Δx and Δy, so addition and subtraction do not exacerbate errors in representation of the components of these operations.

However, ΔT and ΔQ also depend on the size of x and y, so multiplication and division can magnify round-off errors in representation.

Chapter 1:
Preliminaries and
Error Analysis
Dr. White

Review:

Prerequisite
Mathematics
Round-off Errors and Computer Arithmetic

Algorithms and Convergence

Introduction to Matlab

Homework

Homework assignment section 1.2, due: TBA

Chapter 1:
Preliminaries and
Error Analysis
Dr. White

Review:

Prerequisite
Mathematics
Round-off Errors and Computer Arithmetic

Algorithms and Convergence

Introduction to Matlab

Overview

Review: Prerequisite Mathematics

Round-off Errors and Computer Arithmetic

Algorithms and Convergence

Introduction to Matlab

Definitions

Definition 16

Algorithm: unambiguous procedure or steps to follow in a specified order.
Pseudo-code: a description of an algorithm including inputs and the form of the output.
Loops: steps to be repeated with possible changes to variables based on a counting index.
Conditional statements: If ... then ... else ...
Condition controlled loops: loop who's termination is based on a condition (While ... do ...), (Repeat ... until ...).

Chapter 1:

Dr. White

Review:

Example of Pseudo-code

Example 17

Generate pseudo-code for the the following problem: Given a function $f(x)$ is integrable on the interval $[a, b]$ approximate the definite integral of $f(x)$, over $[a, b]$, using the Midpoint Method on N uniform subintervals.

Characterizing Algorithms

One criteria imposed on an algorithm (whenever possible) is that small changes in the initial input produce correspondingly small changes in the final results. In this case the algorithm is said to be stable; otherwise it is unstable. Some algorithms are stable only for certain choices of input and are called conditionally stable.

Growth in Error

Definition 18

Suppose that $E_{0}>0$ denotes an error introduced at some stage in the calculations and E_{n} represents the magnitude of the error after n subsequent operations.

- If $E_{n} \approx C n E_{0}$, where C is a constant independent of n, then the growth of error is said to be linear.
- If $E_{n} \approx C^{n} E_{0}$, for some $C>1$, then the error is called exponential.

Linear growth of error is usually unavoidable, and when C and E_{0} are small, the results are generally acceptable. (Stable)

Exponential growth of error is bad! (Unstable)

Chapter 1:

Dr. White

Review:

Iterative Techniques

Example 19

Approximate the definite integral of $f(x)$, over the interval [a, b], using the Midpoint Method (as above) for $N=1,2,4,8, \ldots$ until the difference between successive iterations differ by no more than 10^{-4}.

Chapter 1:
Preliminaries and Error Analysis

Dr. White

Rate of Convergence

Definition 20

Suppose $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is a sequence known to converge to zero and $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to a number α. If a positive constant K exists with

$$
\left|\alpha_{n}-\alpha\right| \leq K\left|\beta_{n}\right|, \text { for large } n,
$$

then we say that $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to α with rate (or order) of convergence $O\left(\beta_{n}\right)$ and we write $\alpha_{n} \rightarrow \alpha+O\left(\beta_{n}\right)$.

Chapter 1:
Preliminaries and Error Analysis

Dr. White

Review:

Prerequisite
Mathematics
Round-off Errors and Computer Arithmetic

Algorithms and
Convergence
Introduction to Matlab

Rate of Convergence Example

Example 21

$x-\sin (x) \rightarrow 0$ as $x \rightarrow 0$. Find the rate of convergence.

Chapter 1:
Preliminaries and
Error Analysis
Dr. White

Review:

Prerequisite
Mathematics
Round-off Errors and Computer Arithmetic

Algorithms and
Convergence
Introduction to Matlab

Homework

Homework assignment section 1.3, due: TBA

Chapter 1:
Preliminaries and
Error Analysis
Dr. White

Review:

Prerequisite
Mathematics
Round-off Errors and Computer Arithmetic

Algorithms and Convergence

Introduction to Matlab

Overview

Review: Prerequisite Mathematics

Round-off Errors and Computer Arithmetic

Algorithms and Convergence

Introduction to Matlab

Chapter 1:

Dr. White

Review:

Prerequisite Mathematics

Algorithms and Convergence

Command Line and Basic Constructs

Example 22

Graph $\sin (x)$ and $\cos (x)$ for $0 \leq x \leq 2 \pi$ using different styles and various partitions in Matlab.

Chapter 1:

M-files: Functions and Scripts

Example 23

Generate a program that has as input constants a, b and $n \geq 1$ and produces as output the Midpoint Method approximation on n subintervals to $\int_{a}^{b} f(x) d x$ where the function f is given by a specified M -file.

Then generate a script that calls this program with $n=2^{k}$ for $k=0,1,2, \ldots, 10$ and graphs the approximations to 3
$\int_{0}\left(1+\sin \left(3 x^{2}\right)\right) d x$ vs. k.

