Chapter 2: Solutions of Equations in One

Variable
Dr. White

Chapter 2: Solutions of Equations in One Variable

Peter W. White
white@tarleton.edu
Department of Mathematics
Tarleton State University

Fall 2018 / Numerical Analysis

Chapter 2:
Solutions of Equations in One Variable

Dr. White

Introduction: Root Finding vs.
Solutions
The Bisection
Method
Fixed-Point Iteration

Newton's Method
Error Analysis for Iterative Methods

Overview

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Chapter 2:

Population Example

- Malthusian model of population is $P^{\prime}(t)=\lambda P(t)$ with $P(0)=P_{0}$. This has solution: $P(t)=P_{0} e^{\lambda t}$.
- If immigration is permited at a constant rate ν, then the model is $p^{\prime}(t)=\lambda P(t)+\nu \Longrightarrow$ $P(t)=P_{0} e^{\lambda t}+\frac{\nu}{\lambda}\left(e^{\lambda t}-1\right)$.
- Question: suppose that P is measured in thousands of individuals, t is years, $P_{0}=1,000, \nu=435$ and $P(1)=1,564$, then find λ.
- That is, find λ where

$$
1,564=1,000 e^{\lambda}+\frac{435}{\lambda}\left(e^{\lambda}-1\right)
$$

Population Example (Continued)

In this equation, λ appears both inside and outside a transcendental function. Because of this, it is not currently possible to solve for λ. The methods in this chapter are designed to approximate solutions of problems that can not be solved exactly. Note: If $F(x)=f(x)-a$, then solving $f(x)=a$ for x is equivalent to finding roots (or zeros) of F. That is, $f(p)=a$ if and only if $F(p)=0$.

Chapter 2:
Solutions of
Equations in One
Variable
Dr. White

Introduction: Root Finding vs.
Solutions
The Bisection Method

Fixed-Point Iteration

Newton's Method
Error Analysis for Iterative Methods

Overview

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Chapter 2:

Intermediate Value Theorem

Theorem 1

Let f be a continuous function on the interval $[a, b]$ with $L \in \mathbb{R}$ between $f(a)$ and $f(b)$. Then there exist $c \in[a, b]$ such that $f(c)=L$.

Corollary 2

Let f be a continuous function on the interval $[a, b]$ with $f(a) f(b)<0$. Then there exists $p \in(a, b)$ such that $f(p)=0$.

Bisection Algorithm or Binary-search Method

To find an approximation to the solution of $f(x)=0$ given the continuous function f on the interval $[a, b]$, where $f(a)$ and $f(b)$ have opposite signs:
INPUT endpoints a, b; tolerance TOL; max number of iterations N_{0}.
OUTPUT approximate solution p or message of failure.
Step 1: Set $i=1$ and $F A=f(a)$,
Step 2: While $i \leq N_{0}$ do steps 3-6,
Step 3: Set $p=a+(b-a) / 2$ and $F P=f(p)$,
Step 4: If $F P=0$ or $(b-a) / 2<T o l$ then OUTPUT(p) and Stop.
Step 5: Set $i=i+1$.
Step 6: If $F A \cdot F P>0$ then $a=p, F A=f(p)$, else set $b=p$.
Step 7: OUTPUT("Method failed, maximum iterations reached") and Stop.

Chapter 2: Solutions of Equations in One

Variable
Dr. White

Introduction: Root

The Bisection Method

Fixed-Point Iteration

Example of Bisection Method

Example 3

Find the square root of 10 accurate to 10^{-2}. Hint: find the positive root of $f(x)=x^{2}-10$.

Chapter 2: Solutions of Equations in One Variable

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Homework

Homework assignment section 2.1, due: TBA

Chapter 2:
Solutions of Equations in One

Variable
Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method
Error Analysis for Iterative Methods

Overview

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Chapter 2:
 Solutions of

 Equations in One

 Equations in One
 Variable
 Dr. White

Introduction: Root

Definition and Example

Definition 4
Fixed Point: The number p is a fixed point for a given function g if $g(p)=p$.

Example 5

Determine any fixed points of the function $g(x)=x^{2}-6$

Dr. White

Sufficient Conditions for Existence

Theorem 6

1. If $g \in C[a, b]$ and $g(x) \in a, b$ for all $x \in[a, b]$, then g has at least one fixed point in $[a, b]$.
2. If, in addition, $g^{\prime}(x)$ exists on (a, b) and a positive constant $k<1$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \text { for all } x \in(a, b)
$$

then there is exactly one fixed point in $[a, b]$.

Chapter 2: Solutions of Equations in One Variable

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Example

Example 7

Show that $g(x)=\cos (x)$ has exactly one fixed point in [$0, \pi / 3$].

Chapter 2:

Variable
Dr. White

Fixed Point Iteration

Suppose we generate a sequence $\left\{p_{n}\right\}$ that converges to p with $p_{n+1}=g\left(p_{n}\right)$ where g is continuous, then p is a fixed point of g.
Proof.

$$
p=\lim _{n \rightarrow \infty} p_{n+1}=\lim _{n \rightarrow \infty} g\left(p_{n}\right)=g\left(\lim _{n \rightarrow \infty} p_{n}\right)=g(p)
$$

Chapter 2: Solutions of Equations in One Variable

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Homework

Homework assignment section 2.2, due: TBA

Chapter 2:
Solutions of
Equations in One
Variable
Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method
Error Analysis for Iterative Methods

Overview

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Dr. White

Definition and Example

Definition 8

Newton's Method: Suppose $f \in C^{1}(I)$, where I is an open interval and $\left\{p_{n}\right\}$ be a sequence in $/$ converging to p with $p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}$. Then p is a root (or zero) of f.

Example 9
Determine any roots of the function $f(x)=x^{2}-6$

Chapter 2:

Convergence

Theorem 10

Let $f \in C^{2}[a, b]$. If $p \in(a, b)$ such that $f(p)=0$ and $f^{\prime}(p) \neq 0$, then there exists a $\delta>0$ such that Newton's method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ converging to p for any initial approximation $p_{0} \in[p-\delta, p+\delta]$.

Note: nothing is said about how small δ might be, or the rate of convergence. In practice, for most reasonable problems, Newton's method will either quickly converge or it will be obvious that it will not converge.

Chapter 2:

Secant Method

Question: What if $f^{\prime}(x)$ is not readily available?

In this case replace $f^{\prime}\left(p_{n}\right)$ with an approximation. If p_{n} is close to p_{n-1}, then

$$
f^{\prime}\left(p_{n}\right) \approx \frac{f\left(p_{n}\right)-f\left(p_{n-1}\right)}{p_{n}-p_{n-1}}
$$

The Secant method assumes that two initial approximations, p_{0} and p_{1}, are given, then for $n=\mathbb{Z}^{+}$,

$$
p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)\left(p_{n}-p_{n-1}\right)}{f\left(p_{n}\right)-f\left(p_{n-1}\right)}
$$

Chapter 2: Solutions of Equations in One

Variable
Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Example

Example 11

Use the Secant method with a tolerance of 10^{-4} to
approximate $\sqrt{6}$.

Chapter 2: Solutions of Equations in One Variable

Dr. White
Introduction: Root

Homework

Read: The Method of False Position at the end of the section and then:

Homework assignment section 2.3, due: TBA

Chapter 2:
Solutions of Equations in One Variable

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method
Error Analysis for Iterative Methods

Overview

Introduction: Root Finding vs. Solutions
The Bisection Method
Fixed-Point Iteration

```
Newton's Method
```


Error Analysis for Iterative Methods

Chapter 2:

Order of Convergence

Definition 12
Suppose $\left\{p_{n}\right\}$ is a sequence that converges to p, with $p_{n} \neq p$ for all n. If there exists positive constants λ and α with

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lambda
$$

then $\left\{p_{n}\right\}$ converges to p of order α, with asymptotic error constant λ.

An iterative technique of the form $p_{n+1}=g\left(p_{n}\right)$ is said to be of order α if the sequence converges to the solution $p=g(p)$ of order α.

Chapter 2: Solutions of Equations in One

Variable
Dr. White

Introduction: Root

Order of Convergence (cont.)

If $\alpha=1$ (and $\lambda<1$), the sequence is linearly convergent.

If $\alpha=2$, the sequence is quadratically convergent.

Example 13
Let $p_{n}=\frac{1}{2^{n}}$. Find the order of convergence to zero.

Chapter 2:

Dr. White

Theorem

Theorem 14
Let $C \in C[a, b]$ be such that $g(x) \in[a, b]$, for all $x \in[a, b]$. Suppose, in addition, that g^{\prime} is continuous on (a, b) and that a positive constant $k<1$ exists with $\left|g^{\prime}(x)\right| \leq k$, for all $x \in(a, b)$. If $g^{\prime}(p) \neq 0$, then for any number $p_{0} \neq p$ in [a, b], the sequence $p_{n+1}=g\left(p_{n}\right)$ converges only linearly to the unique fixed point p in $[a, b]$.

Chapter 2:

Theorem

Theorem 15

Let p be a solution of the equation $x=g(x)$. Suppose that $g^{\prime}(p)=0$ and $g^{\prime \prime}$ is continuous with $\left|g^{\prime \prime}(x)\right|<M$ on an open interval I containing p. Then there exists a $\delta>0$ such that, for $p_{0} \in[p-\delta, p+\delta]$, the sequence defined by $p_{n+1}=g\left(p_{n}\right)$ converges at a rate at least quadratically to p. Moreover, for sufficiently large n,

$$
\left|p_{n+1}-p\right|<\frac{M}{2}\left|p_{n}-p\right|^{2}
$$

Chapter 2: Solutions of Equations in One Variable

Dr. White

Introduction: Root

Homework

Read: The part about Multiple Roots at the end of the section and then:

Homework assignment section 2.4, due: TBA

