Dr. White

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods

Chapter 2: Solutions of Equations in One Variable

Peter W. White

white@tarleton.edu

Department of Mathematics Tarleton State University

Fall 2018 / Numerical Analysis

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods

Overview

Introduction: Root Finding vs. Solutions

he Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Poir Iteration

Newton's Method

Error Analysis for Iterative Methods

Population Example

- Malthusian model of population is $P'(t) = \lambda P(t)$ with $P(0) = P_0$. This has solution: $P(t) = P_0 e^{\lambda t}$.
- ► If immigration is permited at a constant rate ν , then the model is $p'(t) = \lambda P(t) + \nu \implies$ $P(t) = P_0 e^{\lambda t} + \frac{\nu}{\lambda} (e^{\lambda t} - 1).$
- Question: suppose that *P* is measured in thousands of individuals, *t* is years, $P_0 = 1,000$, $\nu = 435$ and P(1) = 1,564, then find λ .
- That is, find λ where

$$1,564=1,000 e^{\lambda}+rac{435}{\lambda}\left(e^{\lambda}-1
ight)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods In this equation, λ appears both inside and outside a transcendental function. Because of this, it is not currently possible to solve for λ . The methods in this chapter are designed to approximate solutions of problems that can not be solved exactly. Note: If F(x) = f(x) - a, then solving f(x) = a for x is equivalent to finding roots (or zeros) of F. That is, f(p) = a if and only if F(p) = 0.

Overview

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Dr. White

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Poir Iteration

Newton's Method

Error Analysis for Iterative Methods

Intermediate Value Theorem

Theorem 1

Let f be a continuous function on the interval [a, b] with $L \in \mathbb{R}$ between f(a) and f(b). Then there exist $c \in [a, b]$ such that f(c) = L.

Corollary 2

Let f be a continuous function on the interval [a, b] with f(a)f(b) < 0. Then there exists $p \in (a, b)$ such that f(p) = 0.

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods

Bisection Algorithm or Binary-search Method

To find an approximation to the solution of f(x) = 0 given the continuous function f on the interval [a, b], where f(a)and f(b) have opposite signs:

INPUT endpoints *a*, *b*; tolerance *TOL*; max number of iterations N_0 .

OUTPUT approximate solution *p* or message of failure.

```
Step 1: Set i = 1 and FA = f(a),
```

```
Step 2: While i \leq N_0 do steps 3-6,
```

```
Step 3: Set p = a + (b - a)/2 and FP = f(p),
```

```
Step 4: If FP = 0 or (b - a)/2 < Tol then
```

OUTPUT(p) and Stop.

Step 5: Set i = i + 1.

Step 6: If $FA \cdot FP > 0$ then a = p, FA = f(p),

else set b = p.

Step 7: OUTPUT("Method failed, maximum iterations reached") and Stop.

Dr. White

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods

Example of Bisection Method

Example 3

Find the square root of 10 accurate to 10^{-2} . Hint: find the positive root of $f(x) = x^2 - 10$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Dr. White

Homework

Homework assignment section 2.1, due: TBA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods

Overview

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Dr. White

Definition and Example

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods **Definition 4 Fixed Point**: The number *p* is a fixed point for a given function *g* if g(p) = p.

Example 5

Determine any fixed points of the function $g(x) = x^2 - 6$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Dr. White

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Sufficient Conditions for Existence

Theorem 6

1. If $g \in C[a, b]$ and $g(x) \in a, b$ for all $x \in [a, b]$, then g has at least one fixed point in [a, b].

2. If, in addition, g'(x) exists on (a, b) and a positive constant k < 1 exists with

 $|g'(x)| \leq k$, for all $x \in (a, b)$,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

then there is exactly one fixed point in [a, b].

Dr. White

Example

Introduction: Roc Finding vs.

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Example 7 Show that g(x) = cos(x) has exactly one fixed point in $[0, \pi/3]$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Dr. White

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Fixed Point Iteration

Suppose we generate a sequence $\{p_n\}$ that converges to p with $p_{n+1} = g(p_n)$ where g is continuous, then p is a fixed point of g.

Proof.

$$p = \lim_{n \to \infty} p_{n+1} = \lim_{n \to \infty} g(p_n) = g\left(\lim_{n \to \infty} p_n\right) = g(p).$$

Dr. White

Homework

Homework assignment section 2.2, due: TBA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The Bisection

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Overview

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Definition and Example

Dr. White

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods **Definition 8 Newton's Method:** Suppose $f \in C^1(I)$, where *I* is an open interval and $\{p_n\}$ be a sequence in *I* converging to *p* with $p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}$. Then *p* is a root (or zero) of *f*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Example 9

Determine any roots of the function $f(x) = x^2 - 6$

Convergence

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Theorem 10

Let $f \in C^2[a, b]$. If $p \in (a, b)$ such that f(p) = 0 and $f'(p) \neq 0$, then there exists a $\delta > 0$ such that Newton's method generates a sequence $\{p_n\}_{n=1}^{\infty}$ converging to p for any initial approximation $p_0 \in [p - \delta, p + \delta]$.

Note: nothing is said about how small δ might be, or the rate of convergence. In practice, for most reasonable problems, Newton's method will either quickly converge or it will be obvious that it will not converge.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Dr. White

Secant Method

1

Question: What if f'(x) is not readily available?

In this case replace $f'(p_n)$ with an approximation. If p_n is close to p_{n-1} , then

$$f'(p_n) \approx \frac{f(p_n) - f(p_{n-1})}{p_n - p_{n-1}}$$

The Secant method assumes that two initial approximations, p_0 and p_1 , are given, then for $n = \mathbb{Z}^+$,

$$p_{n+1} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Poir Iteration

Newton's Method

Error Analysis for Iterative Methods

Example

Dr. White

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Example 11

Use the Secant method with a tolerance of 10^{-4} to approximate $\sqrt{6}$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Homework

Read: The Method of False Position at the end of the section and then:

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Homework assignment section 2.3, due: TBA

Overview

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Order of Convergence

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Definition 12

Suppose $\{p_n\}$ is a sequence that converges to p, with $p_n \neq p$ for all n. If there exists positive constants λ and α with

$$\lim_{n\to\infty}\frac{|\boldsymbol{p}_{n+1}-\boldsymbol{p}|}{|\boldsymbol{p}_n-\boldsymbol{p}|^{\alpha}}=\lambda,$$

then $\{p_n\}$ converges to p of order α , with asymptotic error constant λ .

An iterative technique of the form $p_{n+1} = g(p_n)$ is said to be of **order** α if the sequence converges to the solution p = g(p) of order α .

Dr. White

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Order of Convergence (cont.)

If $\alpha = 1$ (and $\lambda < 1$), the sequence is **linearly** convergent.

If $\alpha = 2$, the sequence is **quadratically convergent**.

Example 13 Let $p_n = \frac{1}{2^n}$. Find the order of convergence to zero.

Theorem

Dr. White

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods

Theorem 14

Let $C \in C[a, b]$ be such that $g(x) \in [a, b]$, for all $x \in [a, b]$. Suppose, in addition, that g' is continuous on (a, b) and that a positive constant k < 1 exists with $|g'(x)| \le k$, for all $x \in (a, b)$. If $g'(p) \ne 0$, then for any number $p_0 \ne p$ in [a, b], the sequence $p_{n+1} = g(p_n)$ converges only linearly to the unique fixed point p in [a, b].

in One le

Dr. White

Introduction: Roo Finding vs. Solutions

The Bisection Method

Fixed-Poin Iteration

Newton's Method

Error Analysis for Iterative Methods

Theorem

Theorem 15

Let p be a solution of the equation x = g(x). Suppose that g'(p) = 0 and g'' is continuous with |g''(x)| < M on an open interval I containing p. Then there exists a $\delta > 0$ such that, for $p_0 \in [p - \delta, p + \delta]$, the sequence defined by $p_{n+1} = g(p_n)$ converges at a rate at least quadratically to p. Moreover, for sufficiently large n,

$$|p_{n+1}-p|<rac{M}{2}|p_n-p|^2.$$

Dr. White

Introduction: Root Finding vs. Solutions

The Bisection Method

Fixed-Point Iteration

Newton's Method

Error Analysis for Iterative Methods

Homework

Read: The part about **Multiple Roots** at the end of the section and then:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Homework assignment section 2.4, due: TBA