12.6 Cylinders and Quadric Surfaces

Cylinders

Definition: A cylinder is a surface that consists of all lines that are parallel to a given line and pass through a given curve.

Example: a right-circular cylinder $y^{2}+z^{2}=4$.
$\ln [1]:=$ ContourPlot3D $\left[y^{2}+z^{2}=4,\{x,-1,5\},\{y,-3,3\},\{z,-3,3\}\right.$, AxesLabel \rightarrow Automatic $]$

Example: a parabolic cylinder $z=x^{2}$.
$\ln [2]:=\operatorname{ContourPlot3D}\left[z=x^{2},\{x,-3,3\},\{y,-3,3\},\{z,-1,5\}\right.$, AxesLabel \rightarrow Automatic $]$

Example: a sinusoidal cylinder $z=\sin (x)$.
$\ln [3]:=\operatorname{ContourPlot3D}[z=\operatorname{Sin}[x],\{x,-3 \operatorname{Pi}, 3 \operatorname{Pi}\},\{y,-10,10\},\{z,-5,5\}$, AxesLabel \rightarrow Automatic $]$

Quadric Surfaces

Definition: a Quadric Surface is the graph of a second-degree polynomial equation in the variables x, y, and z.

The most general form for this type of equation is:

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+H y+I z+J=0
$$

However, through the use of translations, rotations and change of variables it can be reduced to one of the two forms:

$$
a x^{2}+b y^{2}+c z^{2}+d=0, \text { or } z=a x^{2}+b y^{2}
$$

See page 854 for a table of the different types of quadric surfaces. We will look at a few examples here.
Example: elliptic paraboloid
$\ln [10]:=$
$\mathrm{p} 1=$ ContourPlot3D[z=-4 $\mathrm{x}^{2}+\mathrm{y}^{2},\{\mathrm{x},-4,4\},\{y,-4,4\},\{z,-1,10\}$, AxesLabel \rightarrow Automatic]; p2 = ContourPlot $\left[4 x^{2}+y^{2},\{x,-3,3\},\{y,-3,3\}\right.$, FrameLabel \rightarrow Automatic $]$; GraphicsGrid[\{\{p1, p2\}\}]

Example: a hyperbolic paraboloid
$\ln [14]]=$ ContourPlot3D[x=$z^{2}-y^{2},\{x,-3,3\},\{y,-3,3\},\{z,-3,3\}$, AxesLabel \rightarrow Automatic $]$

Note that the "level curves" are parabolas when slicing for constant z and constant y and are hyperbolas for constant x.

