16.6 Parametric Surfaces and their Areas

These notes are intended as a supplement to the material covered in section 16.6 of the book. Please read the material in the book before proceeding.

Recall parametric curves, $C: \vec{r}(t)=\langle x(t), y(t), z(t)\rangle$. This is a vector function with one independent variable and produces a curve. For example:

```
ParametricPlot3D[{Cos[t], Sin[t], t/(6 Pi)}, {t, 0, 6 Pi}]
```


This is a helix.
A little piece of arc-length is given by $\Delta s=\left|\vec{r}^{\prime}(t)\right| \Delta t$.
Now look at a vector function of two independent variables, $S: \vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$. This is a surface. For example:

```
ParametricPlot3D[{Sin[u] Cos[v], Sin[u] Sin[v], 位[u]},{u,0, Pi/2},{v, 0, 2Pi}]
```


This is the hemisphere or upper half of a sphere of radius 1. Recall that the change of variables between rectangular and spherical was $x=\rho \operatorname{Sin}[\phi] \operatorname{Cos}[\theta], y=\rho \operatorname{Sin}[\phi] \operatorname{Sin}[\theta]$, and $z=\rho \operatorname{Cos}[\phi]$, where ρ is distance from the origin, ϕ is measured down from the positive z-axis and θ is the same angle as in polar (or cylindrical) coordinates.

Recall from section section 15.6 that when a surface is given by $z=f(x, y)$, then the surface area was

$$
\Delta S=|\vec{a} \times \vec{b}|=\sqrt{f_{x}(x, y)^{2}+f_{y}(x, y)^{2}+1} \Delta x \Delta y
$$

where $\vec{a}=\left\langle\Delta x, 0, f_{x}(x, y)\right\rangle$ and $\vec{b}=\left\langle 0, \Delta y, f_{y}(x, y)\right\rangle$. In a similar fashion, the area of a parametric surface is given by

$$
\Delta S=\left|\overrightarrow{r_{u}} \times \vec{r}_{v}\right| \Delta u \Delta v
$$

Then the total surface area would be the double integral

$$
\iint_{D}\left|\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)\right| d u d v,
$$

where D is the (u, v) region that maps the part of the surface of interest.

Example (i)

Find a parameterization for the surface $2 x+y+z=6$ and use the parameterization to find the area of the part of the surface that is in the first octant.

First: because we can write the equation as z as a function of x and y, we can use x and y as the parameters. Thus, one parameterization of the surface is

$$
\vec{r}(x, y)=\langle x, y, 6-2 x-y\rangle .
$$

Next, look at a graph
$\operatorname{In}[3]:=\operatorname{ParametricPlot3D}[\{\{x, y, 6-2 x-y\},\{x, y, 0\}\},\{x, 0,3\},\{y, 0,6\}$, PlotRange $\rightarrow\{\{0,3\},\{0,6\},\{-1,6\}\}$, AxesLabel $\rightarrow\{x, y, z\}$, BoxRatios $\rightarrow\{1,1,1\}]$

The part of the surface that is in the first octant has parameter values in a triangular region:
$[4]:=P \operatorname{lot}[6-2 x,\{x, 0,3\}]$

The "increment" of surface area is

$$
d S=\left|\vec{r}_{x} \times \vec{r}_{y}\right| d x d y=|\langle 1,0,-2\rangle \times\langle 0,1,-1\rangle| d x d y=|\langle 2,1,1\rangle| d x d y .
$$

Note that in this case, $\vec{r}_{x} \times \vec{r}_{y}=\langle 2,1,1\rangle$, the normal vector given by the coefficients of the equation of the plane in standard form. So the area of the surface is the double integral:

$$
\int_{0}^{3} \int_{0}^{6-2 x}|\langle 2,1,1\rangle| d y d x=\sqrt{2^{2}+1^{2}+1^{2}}\left(\frac{1}{2}(3)(6)\right)=9 \sqrt{6} .
$$

Note that we do not need to actually do the integral (of a constant), because the value of the integral is the area of the region times the (constant) integrand.

Example (ii)

Find a parameterization of the top half of $x^{2}+y^{2}-z^{2}=1$.
Note that we can rewrite the equation as $x^{2}+y^{2}=z^{2}+1$. So, this is a hyperboloid in one sheet. For fixed z, we have a circle of radius $\sqrt{z^{2}+1}$. Thus, one parameterization is

$$
\vec{r}(\theta, z)=\left\langle\sqrt{z^{2}+1} \cos [\theta], \sqrt{z^{2}+1} \sin [\theta], z\right\rangle, 0 \leq \theta \leq 2 \pi, z \geq 0 .
$$

The increment of surface area for this one is a bit more complicated:

$$
\begin{gathered}
\overrightarrow{r_{\theta}}=\left\langle-\sqrt{z^{2}+1} \sin [\theta], \sqrt{z^{2}+1} \cos [\theta], 0\right\rangle, \\
\vec{r}_{z}=\left\langle\frac{z}{\sqrt{z^{2}+1}} \cos [\theta], \frac{z}{\sqrt{z^{2}+1}} \sin [\theta], 1\right\rangle,
\end{gathered}
$$

so we have

$$
\left|\vec{r}_{\theta} \times \vec{r}_{z}\right|=\left|\left\langle\sqrt{z^{2}+1} \cos [\theta], \sqrt{z^{2}+1} \sin [\theta],-z\right\rangle\right|=\sqrt{2 z^{2}+1} .
$$

