
16.6 Parametric Surfaces and their Areas
These notes are intended as a supplement to the material covered in section 16.6 of the book.  Please 
read the material in the book before proceeding.

Recall parametric curves, C : r(t) = 〈x(t), y(t), z(t)〉.  This is a vector function with one independent 
variable and produces a curve.  For example:

In[1]:= ParametricPlot3DCos[t], Sin[t], t  6 Pi, {t, 0, 6 Pi}

Out[1]=

This is a helix.

A little piece of arc-length is given by Δ s =  r ' (t)Δ t.

Now look at a vector function of two independent variables, S : r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉.  This 
is a surface.  For example:

In[2]:= ParametricPlot3D{Sin[u] Cos[v], Sin[u] Sin[v], Cos[u]}, u, 0, Pi  2, {v, 0, 2 Pi}

Out[2]=

This is the hemisphere or upper half of a sphere of radius 1.  Recall that the change of variables 
between rectangular and spherical was x = ρ Sin[ϕ]Cos[θ], y = ρ Sin[ϕ] Sin[θ], and z = ρCos[ϕ], where ρ 
is distance from the origin, ϕ is measured down from the positive z-axis and θ is the same angle as in 
polar (or cylindrical) coordinates.

Recall from section section 15.6 that when a surface is given by z = f(x, y), then the surface area was



Δ S = a× b

 = fx(x, y)2 + fy(x, y)2 + 1 Δ xΔ y

where a = 〈Δ x, 0, fx(x, y)〉 and b = 〈0, Δ y, fy(x, y)〉.  In a similar fashion, the area of a parametric surface 
is given by

Δ S = ru×rvΔ uΔ v.

Then the total surface area would be the double integral

∫∫
D

ru(u, v)×rv(u, v)ⅆuⅆv,

where D is the (u, v) region that maps the part of the surface of interest.

Example (i)

Find a parameterization for the surface 2 x + y + z = 6 and use the parameterization to find the area of 
the part of the surface that is in the first octant.

First: because we can write the equation as z as a function of x and y, we can use x and y as the parame-
ters.  Thus, one parameterization of the surface is

r(x, y) = 〈x, y, 6 - 2 x - y〉.

Next, look at a graph

In[3]:= ParametricPlot3D[{{x, y, 6 - 2 x - y}, {x, y, 0}}, {x, 0, 3}, {y, 0, 6},

PlotRange → {{0, 3}, {0, 6}, {-1, 6}}, AxesLabel → {x, y, z}, BoxRatios → {1, 1, 1}]

Out[3]=

The part of the surface that is in the first octant has parameter values in a triangular region:
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In[4]:= Plot[6 - 2 x, {x, 0, 3}]

Out[4]=
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The “increment” of surface area is

d S = rx×ry d x d y = 〈1, 0, -2〉×〈0, 1, -1〉 d x d y = 〈2, 1, 1〉 d x d y.

Note that in this case, rx×ry = 〈2, 1, 1〉, the normal vector given by the coefficients of the equation of the 
plane in standard form.  So the area of the surface is the double integral:

∫0
3
∫0

6-2 x
〈2, 1, 1〉ⅆyⅆx = 22 + 12 + 12  1

2 (3) (6) = 9 6 .

Note that we do not need to actually do the integral (of a constant), because the value of the integral is 
the area of the region times the (constant) integrand.

Example (ii)

Find a parameterization of the top half of x2 + y2 - z2 = 1.  

Note that we can rewrite the equation as x2 + y2 = z2 + 1.  So, this is a hyperboloid in one sheet.  For 
fixed z, we have a circle of radius z2 + 1 .  Thus, one parameterization is

r(θ, z) =  z2 + 1 Cos[θ], z2 + 1 Sin[θ], z,  0 ≤ θ ≤ 2π,  z ≥ 0.

The increment of surface area for this one is a bit more complicated:

rθ = - z2 + 1 Sin[θ], z2 + 1 Cos[θ], 0,

rz
 =  z

z2+1
Cos[θ], z

z2+1
Sin[θ], 1,

so we have

rθ× rz =  z2 + 1 Cos[θ], z2 + 1 Sin[θ], -z = 2 z2 + 1 .
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