Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Chapter 3: Approximation Theory

Peter W. White white@tarleton.edu

Department of Mathematics Tarleton State University

Summer 2015 / Numerical Analysis

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Overview

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fast Fourier Transforms

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms The l_p norm of an *n*-vector \vec{v} is

$$||\vec{\mathbf{v}}||_{p} = \left(\sum_{k=1}^{n} |\mathbf{v}_{k}|^{p}\right)^{1/p}$$

Let $S = \{(x_k, y_k)\}_{k=1}^n$ be a set of discrete data points derived from an unknown function *f* and let *g* be a function with parameters $\{a_j\}_{j=1}^m$. We say that *g* approximates *f* (or the data set) with I_p error of

$$E_p(a_1, a_2, ..., a_m) = \sum_{k=1}^n |y_k - g(x_k)|^p$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Examples

Example 1

Suppose the approximating function is $g(x) = a_1 e^{a_2 x} + a_3$. Then the l_1 error would be

$$E_1(a_1, a_2, a_3) = \sum_{k=1}^n |y_k - (a_1 e^{a_2 x_k} + a_3)|.$$

Finding the best fit parameters in an absolute sense would require minimizing the I_{∞} error:

$$E_{\infty}(a_1, a_2, a_3) = \max_{1 \le k \le n} \{ |y_k - (a_1 e^{a_2 x_k} + a_3)| \}.$$

Both of these error functions lead to difficult minimization problems.

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Square Error

The Euclidean or Square error function,

$$E \equiv E_2(a_1,...,a_m) = \sum_{k=1}^n (y_k - g(x_k))^2,$$

is the commonly used error function because of it's convenient minimization properties and the following:

Theorem 2

(From Analysis) For all $p, q \in \mathbb{Z}^+ \cup \{\infty\}$ and all $n \in \mathbb{Z}^+$, there exist $m, M \in \mathbb{R}^+$ such that for all $\vec{v} \in \mathbb{R}^n$,

$$m||\vec{v}||_{p} \leq ||\vec{v}||_{q} \leq M||\vec{v}||_{p}.$$

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Linear Least-Squares Approximation

Suppose that $\{\phi_j\}_{j=1}^m$ are a set of "basis" functions and $g(x) = a_1\phi_1(x) + a_2\phi_2(x) + ... + a_m\phi_m(x)$. Then *g* approximates a data set *S* with square error given above. To minimize this error we solve the system

$$rac{\partial E}{\partial a_j} = 0, \ 1 \leq j \leq m$$

of linear equations.

Example 3

Straight-line, linear least-squares approximation uses $g(x) = a_1x + a_2$ as the approximating function.

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Overview

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Fast Fourier Transforms

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Function Norms

Suppose $f \in C[a, b]$, then the L_p norm of f is given by

$$||f||_{p} = \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{1/p}$$

.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Suppose *g* is an approximating function for *f*. Then the L_p error between *f* and *g* is

$$E_p = \int_a^b |f(x) - g(x)|^p \, dx$$

where g (and then E_p) may depend on parameters a_1 , a_2 , ..., a_m .

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Square Error for Functions

As with the discrete case, the common error that is used for functions is the **square error**, when p = 2.

Example 4

Suppose g is an m^{th} degree polynomial. Then the square error is

$$E \equiv E_2(a_0,...,a_m) = \int_a^b \left(f(x) - \sum_{k=0}^m a_k x^k\right)^2 dx.$$

To minimize this error over the parameter space we solve the linear system of **normal equations**:

$$\frac{\partial E}{\partial a_k} = 0, \ k = 0, 1, ..., m.$$

Dr. White

Discrete Least Squares Approximation

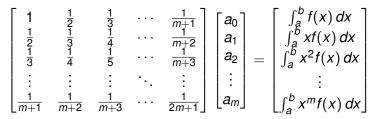
Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Hilbert Matrix

The above system of normal equations leads to:



The coefficient matrix is called a **Hilbert matrix**, which is a classic example for demonstrating round-off error difficulties.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Linear Independence of Functions

Definition 5 A set of functions $\{f_1, f_2, ..., f_n\}$ is said to be **linearly independent** on [a, b] if

$$a_1f_f(x) + a_2f_2(x) + \cdots + a_nf_n(x) = 0, \ \forall x \in [a,b]$$

$$\Leftrightarrow a_1 = a_2 = \cdots = a_n = 0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Otherwise the set of functions is **linearly dependent**.

Example 6

Is $\{1, x, x^2\}$ linearly independent? How about $\{1, \cos(2x), \cos^2(x)\}$?

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Orthogonal Functions and L₂ Inner Product

Definition 7

Let $f, g \in C[a, b]$. The L_2 inner product of f and g is given by

$$\langle f,g\rangle = \int\limits_{a}^{b} f(x)g(x)\,dx.$$

Note that the L_2 norm of *f* is then $||f||_2 = \sqrt{\langle f, f \rangle}$.

Definition 8

Two functions *f* and *g*, both in C[a, b], are said to be **Orthogonal** if $\langle f, g \rangle = 0$.

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Weighted Inner Products

Definition 9

An integrable function w is called a weight function on the interval I if $w(x) \ge 0$, for all x in I, but $w(x) \ne 0$ on any subinterval of I.

The purpose of a weight function is to assign more importance to approximations on certain portions of the interval.

Definition 10

For f and g in C[a, b] and w a weight function on [a, b],

$$\langle f,g\rangle_w = \int\limits_a^b w(x)f(x)g(x)\,dx$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is a weighted inner product.

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Weighted Errors

The error function associated with a weighted inner product is

$$E(a_0,...,a_m) = \int_{a}^{b} w(x) (f(x) - g(x))^2 dx$$

where the approximating function g depends on the parameters a_k .

Example 11

Suppose $\{\phi_0, \phi_1, ..., \phi_m\}$ is a set of linearly independent functions on [a, b] and w is a weight function for [a, b]. Given $f \in C[a, b]$, we want to find the best fit approximation

$$g(x)=\sum_{k=0}^m a_k\phi_k(x).$$

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Example Continued

That is, we wish to minimize the above error. This leads to a system of normal equations of the form

$$\langle f, \phi_j \rangle_{\mathbf{w}} = \sum_{k=0}^m a_k \langle \phi_k, \phi_j \rangle_{\mathbf{w}}.$$

If we can choose the functions in $\{\phi_0, \phi_1, ..., \phi_m\}$ to be pairwise orthogonal (with respect to the weight *w*), then the minimizing parameters would be given by

$$a_k = \frac{\langle f, \phi_k \rangle_w}{\langle \phi_k, \phi_k \rangle_w}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Sine and Cosine

Example 12

Show that $\{1, \sin(kx), \cos(kx)\}_{k=1}^{m}$ form an orthogonal set of functions with respect to $w(x) \equiv 1$ on $[-\pi, \pi]$.

Example 13

Find an orthogonal set of polynomials that span the space of third degree polynomials with respect to $w(x) \equiv 1$ on [-1, 1]. This uses a **Gram-Schmidt process**. These polynomials are the first four **Legendre Polynomials**.

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Homework

Homework assignment 5, due: TBA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Overview

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fast Fourier Transforms

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms Why?

Polynomials are good in that:

- Any continuous function can be approximated on a closed interval to within an arbitrary tolerance.
- Polynomials are easy to evaluate at arbitrary values.
- The derivatives and integrals of polynomials exist and are easy to determine.

Polynomials do tend to oscillate dramatically. So in discrete approximations, the approximating polynomial may have small l_2 error even though the L_2 error between the polynomial and the underlying function is large. Polynomials do not do well with discontinuities, especially singularities.

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Rational Functions

A rational function of degree N has the form

I

$$r(x)=\frac{p(x)}{q(x)}$$

where

$$p(x) = p0 + p_1 x + ... + p_n x^n$$

and

$$q(x) = q_0 + q_1 x + \ldots + q_m x^m$$

with n + m = N.

Rational functions often do a better job of approximating functions (with the same effort) as polynomials, and can include discontinuities. Note that, without loss of generality, we may set $q_0 = 1$.

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Padé Approximation

This is an extension of Taylor polynomials to rational functions. It chooses parameters so that $f^{(k)}(0) = r^{(k)}(0)$ for k = 0, 1, ..., N. When n = N and m = 0, the Padé approximation is simply the N^{th} degree Maclaurin polynomial.

Suppose f(x) has a Maclaurin expansion: $f(x) = \sum a_i x^i$. Then

$$f(x) - r(x) = rac{f(x)q(x) - p(x)}{q(x)} \ = rac{\sum\limits_{i=0}^{\infty} a_i x^i \sum\limits_{i=0}^{m} q_i x^i - \sum\limits_{i=0}^{n} p_i x^i}{q(x)}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Minding the p's and q's

The objective is to find the constants p_i and q_i so that

$$f^{(k)}(0) - r^{(k)}(0) = 0$$
 for $k = 0, 1, ..., N$.

This means f - r has a root of multiplicity N + 1 at x = 0. That is, the numerator of f(x) - r(x) has no non-zero terms of degree less than N + 1. So,

$$\sum_{i=0}^{k} a_i q_{k-i} - p_k = 0$$

where we set $p_i = 0$ for i = n + 1, n + 2, ..., N and $q_i = 0$ for i = m + 1, m + 2, ...N.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Example

Example 14

Find the Padé approximation for e^{-x} of degree 5 with n = 3 and m = 2.

Solution: expand the following and collect terms, setting coefficients of x^j to zero for j = 0, 1, ..., 5.

$$\left(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots\right) \left(1 + q_1 x + q_2 x^2\right)$$
$$- \left(p_0 + p_1 x + p_2 x^2 + p_3 x^3\right).$$
To get $p_0 = 1, p_1 = -\frac{3}{5}, p_2 = \frac{3}{20}, p_3 = -\frac{1}{60}, q_1 = \frac{2}{5}, \text{and}$
$$q_2 = \frac{1}{20}.$$

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Overview

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Fast Fourier Transforms

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

$$e^{ix} = 1 + (ix) + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \dots$$
$$= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots\right)$$
$$= \cos(x) + i\sin(x),$$

where $i = \sqrt{-1}$. So we can write

Euler's Formula

$$a_k\cos(kx)+b_k\sin(kx)=c_ke^{kx},$$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

where a_k and b_k are real, and c_k is complex.

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Trigonometric Polynomials

Given 2*m*, evenly spaced, data points $\{x_j, y_j\}$ from a function *f*, we can transform the data in a linear way so that it is assumed that $x_j = -\pi + (j/m)\pi$ for j = 0, 1, 2, ..., 2m - 1. Then we can find a_k and b_k so that

$$S_m(x) = \frac{a_0 + a_m \cos(mx)}{2} + \sum_{k=1}^{m-1} \left(a_k \cos(kx) + b_k \sin(kx) \right)$$

interpolates the transformed data. That is, when

$$a_k = \frac{1}{m} \sum_{j=0}^{2m-1} y_j \cos(kx_j)$$
 and $b_k = \frac{1}{m} \sum_{j=0}^{2m-1} y_j \sin(kx)$,

the I_2 error between $S_m(x)$ and the data is zero.

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Using Symmetry

Euler's formula gives us $S_m(x) = \frac{1}{m} \sum_{k=0}^{2m-1} c_k e^{ikx}$ where $c_k = \sum_{k=0}^{2m-1} y_j e^{ik\pi j/m}$. From this we have $a_k + ib_k = \frac{(-1)^k}{m} c_k$. Suppose $m = 2^p$ for some positive integer p, then for k = 0, 1, 2, ..., m - 1, we have

$$c_k + c_{m+k} = \sum_{j=0}^{2m-1} y_j e^{ik\pi j/m} (1 + e^{ij\pi}).$$

But $1 + e^{ij\pi} = 2$ if *j* is even and zero if *j* is odd, so there are only *m* nonzero terms in the sum and we can write

$$c_k + c_{m+k} = 2 \sum_{l=0}^{m-1} y_{2l} e^{ik\pi(2l)/m} = 2 \sum_{l=0}^{m-1} y_{2l} e^{ik\pi l/(m/2)}$$

Similarly,

Theory Dr. White

Chapter 3: Approximation

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

$$c_k - c_{m+k} = 2e^{ik\pi/m} \sum_{l=0}^{m-1} y_{2l+1} e^{ik\pi l/(m/2)}$$

Note that these two relationships allow us to calculate all of the c_k 's but the sums now require $2m^2 + m$ complex multiplications instead of $(2m)^2$ multiplications calculating the coefficients directly.

These sums have the same form as the sum for calculating the c_k 's directly except we replace m with m/2. Thus, we can repeat the process (another p - 1 times) to further reduce the number of complex multiplications to $3m + m \log_2(m) = O(m \log_2(m))$. If m = 1024, that is about 13,300 complex multiplications instead of about 4,200,000 using the direct method.

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

Fast Fourier Transforms

Example

Example 15

Play with Matlab to investigate FFT using functions like sin(nx) and cos(nx) for various values of $n \in \mathbb{Z}^+$. Then try $f_1(x) = 1 - x^2$ and $f_2(x) = x^3$ on [-1, 1]

Dr. White

Discrete Least Squares Approximation

Orthogonal Polynomials

Rational Function Approximation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Fast Fourier Transforms