PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuit

Epilogue

Chapter 4: Functional Limits and Continuity

Peter W. White white@tarleton.edu Initial development by Keith E. Emmert

> Department of Mathematics Tarleton State University

Fall 2011 / Real Anaylsis I

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Overview

Discussion: Examples of Dirichlet and Thomae

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The Intermediate Value Theorem

Sets of Discontinuity

Epilogue

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Dirichlet's Function

PWhite

Discussion

Functional Limits

Combinations o Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Example 1 Let $f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}$

This function is nowhere continuous on \mathbb{R} . (Trust me.)

PWhite

Discussion

Functional Limits

Combinations o Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Modified Dirichlet's Function

Example 2 Let $f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}$

This function is continuous only at c = 0. (Trust me.)

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Thomae's Function

Example 3

$$et f(x) =$$

$$\mathsf{I}, \quad \text{if } x = \mathsf{0}$$

 $\begin{array}{ll} \frac{1}{n}, & \text{if } x = \frac{m}{n} \in \mathbb{Q} \setminus \{0\} \text{ is in lowest terms with } n > 0 \\ 0, & \text{if } x \notin \mathbb{Q}. \end{array}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

This function is continuous on the irrationals. It is discontinuous at the rationals. (Trust me.)

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Overview

Discussion: Examples of Dirichlet and Thomae

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The Intermediate Value Theorem

Sets of Discontinuity

Epilogue

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

PWhite

Discussion

Functional Limits

- Combinations o Continuous Functions
- Continuous Functions on Compact Sets
- The IVT
- Sets of Discontinuity
- Epilogue

$\epsilon-\delta$ Version of Limit of a Function

Remark 4 Recall from Chapter 3:

- ▶ Definition: A point x is a limit point of a set A if every e-neighborhood V_e(x) of x intersects the set A in some point other than x.
- Theorem: A point x is a limit point of a set A if and only if x = lim a_n for some sequence (a_n) contained in A satisfying a_n ≠ x for all n ∈ N.
- A point $x \in A$ is **isolated** if it is not a limit point of A.

Definition 5

Let $f : A \mapsto \mathbb{R}$, and let *c* be a limit point of the domain *A*. We say that $\lim_{x\to c} f(x) = L$ provided that, for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $0 < |x - c| < \delta$ (and $x \in A$) it follows that $|f(x) - L| < \epsilon$.

PWhite

Discussion

Functional Limits

Combinations o Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Topological Version of Limit of a Function

Remark 6 Recall:

- Let a > 0. Then $V_a(x) = \{y \in \mathbb{R} \mid |x y| < a\}$.
- The statement $|x c| < \delta$ is equivalent to $x \in V_{\delta}(c)$.
- The statement $|f(x) L| < \epsilon$ is equivalent to $f(x) \in V_{\epsilon}(L)$.

Definition 7

Let *c* be a limit point of the domain of $f : A \mapsto \mathbb{R}$. We say $\lim_{x\to c} f(x) = L$ provided that, for every ϵ -neighborhood $V_{\epsilon}(L)$ of *L*, there exists a δ -neighborhood $V_{\delta}(c)$ around *c* whith the property that for all $x \in V_{\delta}(c)$ around *c* with the property that for all $x \in V_{\delta}(c)$ different from *c* (with $x \in A$) it follows that $f(x) \in V_{\epsilon}(L)$.

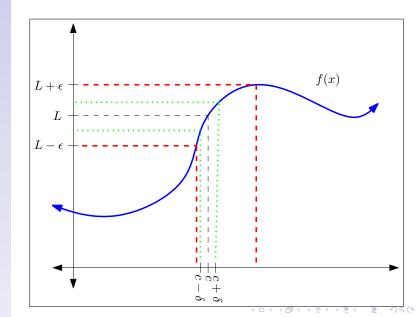
PWhite

Discussion

Functional Limits

- Combinations o Continuous Functions
- Continuous Functions on Compact Sets
- The IVT
- Sets of Discontinuit
- Epilogue

The Picture



Example

PWhite

Discussion

Functional Limits

Combinations o Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuit

Epilogue

Example 8 Let f(x) = 5x - 3. Prove $\lim_{x \to 1} f(x) = 2$.

Example 9 Let $g(x) = x^2 + 1$. Prove $\lim_{x \to -2} g(x) = 5$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Sequential Criterion for Functional Limits

Theorem 10 (Sequential Criterion for Functional Limits)

Given a function $f : A \mapsto \mathbb{R}$ and a limit point c of A, the following are equivalent

- $\lim_{x\to c} f(x) = L$
- ► For all sequences $(x_n) \subseteq A$ satisfying $x_n \neq c$ and $(x_n) \xrightarrow[n \to \infty]{} c$, it follows that $f(x_n) \xrightarrow[n \to \infty]{} L$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof:

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Algebraic Limit Theorem for Functional Limits

Corollary 11

Let f and g be functions defined on a domain $A \subseteq \mathbb{R}$, and assume $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$ for some limit point c of A. Then,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 1. $\lim_{x\to c} kf(x) = kL$ for all $k \in \mathbb{R}$.
- 2. $\lim_{x \to c} [f(x) + g(x)] = L + M.$
- 3. $\lim_{x\to c} [f(x)g(x)] = LM.$

4.
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M} \text{ provided } M \neq 0.$$

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Divergence Criterion for Functional Limits

Corollary 12 (Divergence Criterion for Functional Limits)

Let f be a function defined on A, and let c be a limit point of A. If there exist two sequences (x_n) and (y_n) in A with $x_n \neq c$ and $y_n \neq c$ for all n, and

 $\lim x_n = \lim y_n = c \text{ but } \lim f(x_n) \neq \lim f(y_n),$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

then we can conclude that the functional limit $\lim_{x\to c} f(x)$ does not exist.

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Example

Example 13

Let $f(x) = \sin(\frac{1}{x})$. Assume the usual properties of the sine function. Show that $\lim_{x\to 0} f(x)$ does not exist.

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Homework

Pages: 108–109 Problems: 4.2.1, 4.2.2, 4.2.3, 4.2.5, 4.2.7, 4.2.9

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Overview

Discussion: Examples of Dirichlet and Thomae

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The Intermediate Value Theorem

Sets of Discontinuity

Epilogue

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Definition of Continuity

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Definition 14 • A function $f : A \mapsto \mathbb{R}$ is continuous at a point $c \in A$

if, for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $|x - c| < \delta$ (and $x \in A$) it follows that $|f(x) - f(c)| < \epsilon$.

If f is continuous at every point in A, the we say that f is continuous on A.

Remark 15

We can't shorten the definition of continuity to $\lim_{x\to c} f(x) = f(c)$ because the definition of functional limits requires the point c to be a limit point of A. Note that limit points of A need not be elements of A. In the definition of continuity, this is not assumed. (Isolated points of A are not limit points).

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Characterizations of Continuity

Theorem 16 (Characterizations of Continuity)

Let $f : A \mapsto \mathbb{R}$, and let $c \in A$ be a limit point of A. The function f is continuous at c if and only if any one of the following conditions is met:

- For all ε > 0, there exists δ > 0 such that |x − c| < δ (and x ∈ A) implies |f(x) − f(c)| < ε.</p>
- $\lim_{x\to c} f(x) = f(c).$
- For all V_ϵ(f(c)), there exists a V_δ(c) with the property that x ∈ V_δ(c) (and x ∈ A) implies f(x) ∈ V_ϵ(f(c)).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• If
$$(x_n) \xrightarrow[n \to \infty]{} c$$
 (with $x_n \in A$), then $f(x_n) \xrightarrow[n \to \infty]{} f(c)$.

Proof:

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Showing Discontinuity at a Point

Corollary 17 (Criterion for Discontinuity)

Let $f : A \mapsto \mathbb{R}$ and let $c \in A$ be a limit point of A. If there exists a sequence $(x_n) \subseteq A$ where $(x_n) \xrightarrow[n \to \infty]{} c$ but such that $f(x_n)$ does not converge to f(c), we may conclude that f is not continuous at c.

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Algebraic Continuity Theorem

Theorem 18 (Algebraic Continuity Theorem)

Assume $f : A \mapsto \mathbb{R}$ and $g : A \mapsto \mathbb{R}$ are continuous at a point $c \in A$. Then,

- kf(x) is continuous at c for all $k \in \mathbb{R}$.
- f(x) + g(x) is continuous at c.
- f(x)g(x) is continuous at c
- f(x)/g(x) is continuous at c, provided the quotient is defined.

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Example

Example 19

Show the following functions are continuous.

- f(x) = k, for any $k \in \mathbb{R}$.
- g(x) = x.
- ▶ $p(x) = a_0 + a_1 x + \dots + a_n x^n$, where $a_i \in \mathbb{R}$ for $0 \le i \le n$.
- All rational functions (quotients of polynomials) are continuous over their domains.

Remark 20 Fact: $f(x) = \sqrt{x}$ is continuous on its domain. (See book for proof).

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Example

Example 21 Show that $f(x) = x \sin(\frac{1}{x})$ is continuous at x = 0.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Composition of Functions

Theorem 22 (Composition of Continuous Functions) Given $f : A \mapsto \mathbb{R}$ and $g : B \mapsto \mathbb{R}$, assume that the range $f(A) = \{f(x) \mid x \in A\} \subseteq B$. If f is continuous at $c \in A$, and if g is continuous at $f(c) \in B$, then

$$(g \circ f)(x) = g[f(x)]$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is continuous at c. Proof:

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Example

Example 23

Note that $f(x) = \sqrt{x^2 - 7x + 5}$ is continuous on it's domain since polynomials and the square root function are both continuous, and the composition of continuous functions remains continuous (on the restricted domain).

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Homework

Pages: 113–114 Problems: 4.3.1, 4.3.4, 4.3.6, 4.3.7, 4.3.9, 4.3.10, 4.3.12

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Overview

Discussion: Examples of Dirichlet and Thomae

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The Intermediate Value Theorem

Sets of Discontinuity

Epilogue

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Definition

Remark 24

Recall: A sequence (x_n) is **bounded** if there exists a number M > 0 such that $|x_n| \le M$ for all $n \in \mathbb{N}$.

Definition 25

Let $f : A \mapsto \mathbb{R}$. We say that f is **bounded on a set** B, where $B \subseteq A$ if there exists an M > 0 such that for every sequence $(x_n) \subseteq B$, we have $|f(x_n)| \leq M$ for all n.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Example

Remark 26

We wish to determine conditions that preserve conditions on sets under continuous functions. That is, if f is continuous and A is open (closed, bounded, compact, etc), does f(A) remain open (closed, etc)?

Example 27

- Consider $f(x) = x^2$ where $f : A = (-1, 1) \mapsto \mathbb{R}$. Is f(A) still open?
- ► Consider $f(x) = \frac{1}{x^2+1}$: $A = [0, \infty) \mapsto \mathbb{R}$. Is f(A) still closed?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Preservation of Compact Sets

Theorem 28 (Preservation of Compact Sets)

Let $f : A \mapsto \mathbb{R}$ be continuous on A. If $K \subseteq A$ is compact, then f(K) is compact.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof:

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Theorem 29 (The Extreme Value Theorem)

Let K be compact. If $f : K \mapsto \mathbb{R}$ is continuous, then f attains a maximum and minimum value.

Proof:

EVT

Uniform Continuity

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Remark 30 Recall: A function $f : A \mapsto \mathbb{R}$ is continuous at a point $c \in A$ if, for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $|x - c| < \delta$ (and $x \in A$) it follows that $|f(x) - f(c)| < \epsilon$. A function f is continuous on A if it is continuous at every point in A.

Definition 31

A function $f : A \mapsto \mathbb{R}$ is **uniformly continuous on** A if for every $\epsilon > 0$, there exists a $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$.

Remark 32

- For continuity on A, we show continuity at each individual point c, so δ may be a <u>function of c</u>.
- For uniform continuity on A, the δ works simultaneously for all c.

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuit

Epilogue

Sequential Criterion for Nonuniform Continuity

Remark 33

To "break" uniform continuity, it is enough to find a single ϵ so that no single δ works for all $c \in A$.

Theorem 34 (Sequential Criterion for Nonuniform Continuity)

A function $f : A \mapsto \mathbb{R}$ fails to be uniformly continuous on A if and only if there exists a particular $\epsilon > 0$ and two sequences (x_n) and (y_n) in A satisfying

$$|x_n-y_n| \xrightarrow[n\to\infty]{} 0 \text{ but } |f(x_n)-f(y_n)| \geq \epsilon.$$

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Example

Example 35

The function $f(x) = \sin(\frac{1}{x})$ is continuous on (0, 1), but not uniformly continuous.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PWhite

Discussior

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Example

Example 36

Let $h(x) = x^2$.

- *h* is continuous, but not uniformly continuous on \mathbb{R} .
- ► $k(x) = x^2 : [-2, 2] \mapsto \mathbb{R}$ is uniformly continuous on [-2, 2].

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Some Compact Theory

Theorem 37

A function that is continuous on a compact set K is uniformly continuous on K.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof:

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Homework

Pages: 119–120 Problems: 4.4.1, 4.4.4, 4.4.6, 4.4.9, 4.4.10

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Overview

Discussion: Examples of Dirichlet and Thomae

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The Intermediate Value Theorem

Sets of Discontinuity

Epilogue

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Connectedness

Definition 38

- Two nonempty sets A, B ⊆ ℝ are separated if A
 ∩ B and A ∩ B are both empty.
- A set E ⊆ ℝ is disconnected if it can be written as E = A ∪ B, where A and B are nonempty separated sets.
- A set that is not disconnected is called connected.

Example 39

- The sets A = (1,3) and B = (3,5) are separated. Hence, E = A ∪ B is disconnected.
- The sets A = (1,3] and B = (3,5) are not separated. Hence, E = A ∪ B is connected.
- The sets A = (∞, √2) ∩ Q and B = (√2, ∞) ∩ Q are separated. Hence, Q = A ∪ B is disconnected.

The IVT Sets of Discontinuit

Epilogue

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Connectedness Theory

Theorem 40

A set $E \subseteq \mathbb{R}$ is connected if and only if, for all nonempty disjoint sets A and B satisfying $E = A \cup B$, there always exists a convergent sequence $(x_n) \xrightarrow[n \to \infty]{} x$ with (x_n) in one of A or B and x an element of the other.

Remark 41

The above theorem states that a set is connected if and only if no matter how it is partitioned into two disjoint sets, it at least one of the sets contains a limit point of the other.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Connectedness Theory

Remark 42

The next theorem states only intervals in \mathbb{R} are connected. This includes infinite intervals.

Theorem 43

A set $E \subseteq \mathbb{R}$ is connected if and only if whenever a < c < b with $a, b \in E$, it follows that $c \in E$ as well.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

PWhite

Discussion

Functional Limits

Combinations or Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Preservation of Connectedness

Theorem 44 (Preservation of Connectedness)

Let $f : A \mapsto \mathbb{R}$ be continuous. If $E \subseteq A$ is connected, then f(E) is connected as well.

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Theorem 45 (The Intermediate Value Theorem)

If $f : [a, b] \mapsto \mathbb{R}$ is continuous and if L is a real number satisfying f(a) < L < f(b) or f(a) > L > f(b), then there exists a point $c \in (a, b)$ where f(c) = L.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof:

IVT

PWhite

Discussion

Functional Limits

Combinations o Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Example

Example 46

Show that the function f(x) = (x - 1)(x - 2)(x - 3) contains at least one root in the interval [0, 4]. (Use the IVT.)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Homework

Pages: 124 Problems: 4.5.2, 4.5.3, 4.5.7

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Discussion: Examples of Dirichlet and

Functional Limits

Overview

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The Intermediate Value Theorem

Sets of Discontinuity

Epilogue

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

PWhite

Discussion

Functional Limits

Combinations o Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Read me.

▲□▶▲□▶▲□▶▲□▶ □ のへで

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Overview

Discussion: Examples of Dirichlet and Thomae

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The Intermediate Value Theorem

Sets of Discontinuity

Epilogue

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

PWhite

Discussion

Functional Limits

Combinations of Continuous Functions

Continuous Functions on Compact Sets

The IVT

Sets of Discontinuity

Epilogue

Read me

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで