
Section 7.1: Systems of Ordinary Differential Equations

Remember that this is a supplement to the material in the book. Please read section 7.1 before looking at these course notes.

First a quick review of ordinary differential equations and why we study them.

Applied mathematics is the study of describing the natural world. In this study we are often more interested in how things change rather than

how things are currently. We want to study how things change in order to predict how things will be in the future. Often it is easier to measure

how things change.

In mathematics, rates of change are described by derivatives. Thus, an important field of mathematics is that of equations which have deriva-

tives in them. This is a extremely broad field of study that includes ordinary and partial derivatives, linear and nonlinear equation, systems of

equation and numerical techniques. We will cover some of the basics.

Definition: An n-th order, constant coefficient, linear ordinary differential equation has the form

dn y

d xn
+ an-1 ·

dn-1 y

d xn-1 +⋯ + a1 ·
d y

d x
+ a0 ·y = f (x)

where ai are constants.

First Order ODE's

Example 1: The growth rate of a population with unlimited resources is proportional to the population size. In mathematics this statement cam

be modeled by the first order equation

d P

d t
= k P.

This is one of the simplest ordinary differential equations (ODE's), called the Malthusian Population Model. We can solve this equation by the

method of separation of variables and we get a solution of

P(t) = C ·ek t.

In Mathematica we would use the DSolve command.

In[]:= sols = DSolve[{P'[t]⩵ k*P[t], P[0]⩵ P0}, P, t]

Out[]= P → Function{t}, ⅇ
k t P0

In this case the P0 is called an initial condition of the ODE while the k is called a parameter of the equation. We can graph this solution for

several values of P0 and k as follows

In[]:= Plot[Evaluate[P[t] /. sols /. {{P0 → 1, k → 0.3}, {P0 → 5, k → 0.1}}], {t, 0, 10}]

Out[]=

2 4 6 8 10

5

10

15

20

We often want to explore families of solutions with either varying values for a parameter or varying values of an initial condition. In the

following we use the Table command to get various parameter values. The output is being suppressed by the semicolon.

In[]:= Clear[P, t, k, P0]

malthus = P'[t] - k*P[t];

malsols = Table[k = 0.05*n;

DSolve[{malthus⩵ 0, P[0]⩵ 1.0}, P, t], {n, 10}];

We graph these solutions as follows:

In[]:= malplot = Plot[Evaluate[P[t] /. malsols], {t, 0, 10},

AxesLabel → {"t", "P(t)"}]

Out[]=

2 4 6 8 10
t

5

10

15

20

25

30
P(t)

Systems of First Order ODE's

Systems of ODE's come about when you have more than one dependent variable, one independent variable and the rate of change in the

dependent variables can depend on any combination of the independent and dependent variables.

Example 2: Consider the following system that model the competition between two species of animals.

d u

d t
= 2 ·u - u ·v,

d v

d t
= -v +

1
2

u ·v

If the first species is u (the prey) and the second is v (the predator), then the first species is harmed, while the second benefits from interactions

between the two species. This is a simple predator-prey model. The system is autonomous because the independent variable does not appear

on the right hand side of the equations. These equations form a non-linear model because of the u ·v terms in the equations. Non-linear

problems often require special techniques to solve in closed form (if possible), so we will use commands that give us a numerical approxima-

tion to the solution. Lets see how Mathematica solves this system. Note in the following that the general form for the NDSolve command is

{list of equations and initial conditions}, {list of things to solve for}, {interval to solve over} and then options which we will see a little later.

In[]:= ppsols = NDSolve[{u'[t]⩵ 2*u[t] - u[t]*v[t],

v'[t] == -v[t] + 1/2*u[t]*v[t], u[0]⩵ v[0]⩵ 5}, {u, v}, {t, 0, 20}];

To see these solutions we can graph the approximations as follows

2 chapter7section1notes.nb

In[]:= pu = Plot[Evaluate[u[t] /. ppsols], {t, 0, 20}, AxesLabel → {"t", "u(t)"}, PlotStyle → Blue]

pv = Plot[Evaluate[v[t] /. ppsols], {t, 0, 20}, AxesLabel → {"t", "v(t)"}, PlotStyle → Red]

Out[]=

5 10 15 20
t

2

4

6

8

u(t)

Out[]=

5 10 15 20
t

1

2

3

4

5

6

v(t)

These graphs are called state-space graphs. This is because we are graphing the state or dependent variables versus the independent variable.

To see both of these graphs at once, we can use the Show command:

In[]:= Show[pu, pv, AxesLabel → {"t", "u(t),v(t)"}]

Out[]=

5 10 15 20
t

2

4

6

8

u(t),v(t)

Another type of graph that is sometimes used is called a phase-space graph. Here we graph the state variables against each other and the

independent variable appears parametrically:

chapter7section1notes.nb 3

In[]:= ParametricPlot[Evaluate[{u[t], v[t]} /. ppsols], {t, 0, 20}, AxesLabel → {"u[t]", "v[t]"}]

Out[]=

2 4 6 8
u[t]

1

2

3

4

5

6

v[t]

Example 3: Solve the previous system of ODE's with initial conditions of (5,2), (5,4), (5,6), and (5,7). Graph all of the solutions on the same

axes in phase-space along with the initial conditions.

First define a vector of initial conditions (note that the first component of each of the initial conditions is 5):

In[]:= v0 = {2, 4, 6, 7}

Out[]= {2, 4, 6, 7}

Then get a table of solutions:

In[]:= Clear[ppsols]

ppsols = Table[

NDSolve[{u'[t]⩵ 2*u[t] - u[t]*v[t],

v'[t] == -v[t] + 1/2*u[t]*v[t], u[0]⩵ 5, v[0]⩵ v0[[n]]}, {u, v}, {t, 0, 20}]

, {n, 1, 4}];

Now use the Show command to combine several graphs:

In[]:= Show

ListPlot[{Table[{5, v0[[n]]}, {n, 1, 4}]}, PlotMarkers → {"o"}],

ParametricPlot[Evaluate[{u[t], v[t]} /. ppsols], {t, 0, 20}],

PlotRange → {-1, 8}, AxesLabel → {"u[t]", "v[t]"},

AxesOrigin → {0, 0}

Out[]=

o

o

o

o

2 4 6 8 10
u[t]

2

4

6

8

v[t]

4 chapter7section1notes.nb

OK. Note that we use the ListPlot command to plot the initial conditions where the list of points is generated using the Table command (note

that the option PlotMarkers sets how the points appear in the graph). We then use the ParametricPlot command to graph the four solutions

that are the output of the NDSolve command. In the Show command we list the various graphics commands followed by some options that

change the vertical axis, label the axes, and setting where the axes pass through on the graph.

Converting Higher Order DE’s into Systems of First Order DE’s

We can convert nth order ODE’s into systems of first order equations as follows:

Example 4: Convert y '' + 3 y ' - 4 y = Sin[t] into a system of first order equations.

To do this we will set u1 = y and u2 = y '. Then u1 ' = y ' = u2 and u2 ' = y '' = Sin[t] - 3 y ' + 4 y (then substitute in for y and y ') to get:

u1 ' = u2,

u2 ' = 4 u1 - 3 u2 + Sin[t].

This is a linear system, that came from a linear second order equation. However, both the original DE and the system are not autonomous. That

is, the independent variable appears in the Sin[t] term of the equations. We can convert the system to an autonomous system by adding another

“dependent” variable: let u0 = t. Then the system becomes,

u0 ' = 1,

u1 ' = u2,

u2 ' = 4 u1 - 3 u2 + Sin[u0].

This is now a non-linear, autonomous system of first order ordinary differential equations. ☺

Example 5: Convert y ''' - y ' y '' + ⅇt y = 0 where y(2) = 1, y ' (2) = 4, y '' (2) = -1 into an autonomous system of first order equations centered at

zero. Note that this equation is homogeneous, but not linear or autonomous.

Here we set u0 = t, u1 = y, u2 = y ' and u3 = y ''. Then

u0 ' = 1, u0(0) = 2,

u1 ' = u2, u1(0) = 1,

u2 ' = u3, u2(0) = 4,

u3 ' = u2 u3 - ⅇu0 u1, u3(0) = -1.

The left hand side of the last equation comes from solving the DE for y '''. The initial conditions for the system come directly form the initial

conditions of the initial value problem.

You may have noticed that an nth order autonomous equation can be written as a system of n first order autonomous equations and you would

add one more equation to the system if you want to write a non-autonomous ODE as an autonomous system.

Practice Problems.

Try these problems in Mathematica, if available, and let me know if you have any questions.

1. Use the DSolve command to try to solve the following problems. If a closed form solution is possible (and
aesthetically pleasing) then show that solution. If Mathematica does not find a nice closed form solution, then find a
numerical solution with initial conditions of y(0)=1 and graph the solution.

a.
dy
dx

= 2 y - 1

b.
dy
dx

= x y

c.
dy
dt

= t2 y - t y2 + t

chapter7section1notes.nb 5

2. Use the NDSolve command to numerically approximate solutions to the following systems of equations. Generate
both state and phase space graphs of the solutions (try different ranges of the independent variable to see what works).

a.
dx
dt

= x + x y, dy
dt

= x2 - y, x(0) = 1, y(0) = 1/2.

b.
dx
dt

= x y sin(t), dy
dt

= x y cos(t), x(0) = 1, y(0) = 2.

c.
dx
dt

= 2 x -
1
2

x y ,

dy
dt

=
1
5

x y - y,

x(0) = 3, 6, 9, 12, 15; y(0) = 1.

6 chapter7section1notes.nb

