
7.2 Review of Matrices

Introduction

A vector is an ordered list of objects (for our class, real or complex numbers).  Vectors are used in 
science to describe things like spacial coordinates (in physics) or life stages (in biology).  We will use 
vectors to write systems of ODE’s in a concise manner. 

Here is an example of a row vector:

In[1]:= rv = Table[vj, {j, 1, 4}]

Out[1]= {v1, v2, v3, v4}

and a column vector:

In[2]:= cv = Table[wj, {j, 1, 4}];

MatrixForm[cv]

Out[3]//MatrixForm=

w1
w2
w3
w4

A matrix is a two dimensional extension of the concept of a vector.  A matrix has rows and columns.  
Here is an example of a 3×4 matrix

In[4]:= A = Table[Table[aj,k, {k, 1, 4}], {j, 1, 3}];

MatrixForm[A]

Out[5]//MatrixForm=

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4

It has 3 rows and 4 columns.  A square matrix has the same number of rows as columns.  The matrix 
given above is not square because it has more columns, then it has rows.  The dimension of a matrix is 
m×n, where m is the number of rows and n is the number of columns.  As stated, the above matrix is 
3×4.  A square matrix would be n×n dimensional.

Vectors can be thought of as matrices, where a row vector has dimension 1×n and a column vector has 
dimension m×1.

Algebra of Matrices

Scalar Multiplication and Addition of Matrices

We can multiply a matrix by a scalar (a real or complex number).  For example:



In[6]:= MatrixForm[c * A]

Out[6]//MatrixForm=

c a1,1 c a1,2 c a1,3 c a1,4
c a2,1 c a2,2 c a2,3 c a2,4
c a3,1 c a3,2 c a3,3 c a3,4

Note that every element of the matrix is multiplied by the scalar.  If two matrices have the same dimen-
sions, then we can add them together (component wise).  For example: If

In[7]:= B = Table[Table[bj,k, {k, 1, 4}], {j, 1, 3}];

MatrixForm[B]

Out[8]//MatrixForm=

b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4

then

In[9]:= MatrixForm[A + B]

Out[9]//MatrixForm=

a1,1 + b1,1 a1,2 + b1,2 a1,3 + b1,3 a1,4 + b1,4
a2,1 + b2,1 a2,2 + b2,2 a2,3 + b2,3 a2,4 + b2,4
a3,1 + b3,1 a3,2 + b3,2 a3,3 + b3,3 a3,4 + b3,4

The Transpose of a matrix:  if A is an m×n matrix with elements aj,k (meaning the number in the j row 
and k column), then the transpose of A, denoted as AT is an n×m matrix with elements ak,j.  For example:

In[10]:= MatrixForm[Transpose[A]]

Out[10]//MatrixForm=

a1,1 a2,1 a3,1
a1,2 a2,2 a3,2
a1,3 a2,3 a3,3
a1,4 a2,4 a3,4

The first row of A becomes the first column of AT, the second row of A becomes the second column of 
AT, and so on.

Matrix Multiplication

Multiplying two matrices together is a little complicated.  First let’s talk about the dot product of two 
vectors.  If two vectors are the same length (dimension), then their dot product is the sum of the prod-
uct of the corresponding elements:

(v1 v2 v3 · · · vn)∘(w1 w2 w3 · · · wn) = v1 w1 + v2 w2 + · · ·+vn wn.

In vector notation this is:

v∘w =∑k=1
n vk wk.

Now for matrix Multiplication.  If A is an m× l matrix and B is an l×n matrix, then AB will be an m×n 
matrix whose element are given by (AB)j,k equals (the jth row of A)∘(the kth column of B).  

Note that matrix multiplication is not commutative.  If A is 2×4, B is 4×2 and C is 4×5, then AB is a 2×2 
matrix while BA is a 4×4 matrix.  Also A C is a 2×5, while C A does not exist (you can not multiply a 4×5 
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and a 2×4 matrix in that order) because the “inner” dimensions do not match.  Two matrices are equal 
if they have the same dimension and the same elements (A = B if and only if aj,k = bj,k for all possible 
values of j and k).

The identity matrix, denoted as I, is the matrix with property that A I = I A = A, for any square matrix A.  
Here are the 2×2, 3×3 and 4×4 identity matrices:

In[11]:= {IdentityMatrix[2] // MatrixForm,

IdentityMatrix[3] // MatrixForm,

IdentityMatrix[4] // MatrixForm}

Out[11]= 
1 0
0 1

,
1 0 0
0 1 0
0 0 1

,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



They have one’s on the main diagonal and zero’s everywhere else.

Example:

In[12]:= Clear[A, B]

In[13]:= A = {{1, 5, 3, 4}, {2, -1, -2, 1}};

MatrixForm[A]

Out[14]//MatrixForm=


1 5 3 4
2 -1 -2 1



In[15]:= B = {{3, -1, 0, 2}, {1, 0, 1, 0}};

MatrixForm[B]

Out[16]//MatrixForm=


3 -1 0 2
1 0 1 0



In[17]:= M = A.B; (* This is multiplying A and B *)

MatrixForm[M]

Dot: Tensors {{1, 5, 3, 4}, {2, -1, -2, 1}} and {{3, -1, 0, 2}, {1, 0, 1, 0}} have incompatible shapes.
Out[18]//MatrixForm=

{{1, 5, 3, 4}, {2, -1, -2, 1}}.{{3, -1, 0, 2}, {1, 0, 1, 0}}

Note that we tried to multiple a 2×4 times a 2×4 and got an error.

In[19]:= M = A.Transpose[B]; (* This is multiplying A and BT *)

MatrixForm[M]

Out[20]//MatrixForm=


6 4
9 0



In[21]:= M.IdentityMatrix[2] // MatrixForm

Out[21]//MatrixForm=


6 4
9 0


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In[22]:= IdentityMatrix[2].M // MatrixForm

Out[22]//MatrixForm=


6 4
9 0



In[23]:= bob = Transpose[B].A;

MatrixForm[bob]

Out[24]//MatrixForm=

5 14 7 13
-1 -5 -3 -4
2 -1 -2 1
2 10 6 8

Note that ABT was a 2×2 matrix while BT A was a 4×4 matrix, so ABT ≠ BT A.  Again, Matrix multiplication 
is NOT, in general, commutative. 

Matrix Inverses

The inverse of a square matrix A, denoted A-1, is a square matrix with the property: A A-1 = A-1 A = I, if it 
exists.  The process for finding an inverse of a matrix is outlined in the book on pages 372-374.  Here is 
an example of how Mathematica can be used to find inverses, by using the Inverse command and the 
RowReduce command.

In[25]:= Clear[A]

In[26]:= A = {{3, 0, 1}, {0, 2, 4}, {1, 1, 1}};

MatrixForm[A]

Out[27]//MatrixForm=

3 0 1
0 2 4
1 1 1

We can augment the matrix on the right with the identity matrix and use RowReduce:

In[28]:= AAug = {{3, 0, 1, 1, 0, 0}, {0, 2, 4, 0, 1, 0}, {1, 1, 1, 0, 0, 1}};

MatrixForm[AAug]

RowReduce[AAug] // MatrixForm

Out[29]//MatrixForm=

3 0 1 1 0 0
0 2 4 0 1 0
1 1 1 0 0 1

Out[30]//MatrixForm=

1 0 0 1

4
-

1

8

1

4

0 1 0 -
1

2
-

1

4

3

2

0 0 1 1

4

3

8
-

3

4

The inverse is the 3×3 matrix given by the last three columns.  Notice that we get the identity matrix on 
the left and the inverse on the right.  

Using the Inverse command we get:
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In[31]:= Inverse[A] // MatrixForm

Out[31]//MatrixForm=

1

4
-

1

8

1

4

-
1

2
-

1

4

3

2
1

4

3

8
-

3

4

Now an example of a matrix that does not have an inverse:

In[32]:= Clear[bob]

In[33]:= bob = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}};

MatrixForm[bob]

bobinverse = Inverse[bob]

Out[34]//MatrixForm=

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Inverse: Matrix {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}} is singular.

Out[35]= Inverse[{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}]

Lets see what happens with the augmented matrix:

In[36]:= bobaug = {{1, 2, 3, 4, 1, 0, 0, 0}, {5, 6, 7, 8, 0, 1, 0, 0},

{9, 10, 11, 12, 0, 0, 1, 0}, {13, 14, 15, 16, 0, 0, 0, 1}};

MatrixForm[bobaug]

RowReduce[bobaug] // MatrixForm

Out[37]//MatrixForm=

1 2 3 4 1 0 0 0
5 6 7 8 0 1 0 0
9 10 11 12 0 0 1 0
13 14 15 16 0 0 0 1

Out[38]//MatrixForm=

1 0 -1 -2 0 0 -
7

2

5

2

0 1 2 3 0 0 13

4
-

9

4

0 0 0 0 1 0 -3 2
0 0 0 0 0 1 -2 1

Notice that we did not get the identity on the left.

Final Thoughts

We can also consider matrices (or vectors) with functions as elements.  In this case, we can integrate or 
differentiate a matrix.  See page 375 of the book.  The goal here can be demonstrated with the 
following.

Consider the system of differential equations:

u1 ' = Cos[t] u1 + ⅇt u2,

u2 ' = ⅇ-t u1 - Sin[t] u2.
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If we let u = 
u1
u2

, then the system can be written as a matrix equation:

u ' = Cos[t] ⅇt

ⅇ-t -Sin[t]
u.

We can then use theory from matrix and linear algebra to try to solve the system.
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