Numerical Analysis

Homework Assignments

Section	Page	Assignments Due	Due
1.1	11	1a, 2b, 3c, 5, 9	
1.2	25	1d, 2b, 4b, 5, 7, 10, 19	
1.3	35	1b, 2, 6a, 6c, 7a, 7c, 10, 14, 15	
2.1		Implement the Bisection method using a computer language and test it on $f(x)=x^{\wedge} 2-2,[0,2]$, with a tolerance of 0.0001	
2.2	63	1a, 5, 10, 13, 23	
2.3	74	2, 3a, 5 (use a program), 7, 13b, 13c	
2.4	84	1a, 1b, 3a, 3b, 7, 8, 10	
3.1	112	1b, 3a, 11, 15 (Mathematica), 23	
3.2	120	1a, 3a, 5	
3.3	130	8 (write a program that outputs the coefficients and a program to graph the points and the poly.)	
3.4	139	1, 3 (write a program, graph the polynomial.)	
3.5	158	3d, 5d	
4.1	180	1b, 3b, 5a, 7a, 20	
4.2	189	1b, 2b, 3b, 4b, 5, 8, 11	
4.3	200	1c, 3c, 5c, 7c, 19	
4.4	208	$1 e, 3 e$, then use interval doubling to approximate the integral using these two methods accurate to 0.00001 .	
4.5	217	$5 \mathrm{a}, 5 \mathrm{e}, 11$ (write a program that outputs the Romberg table), 15.	
4.6	226	1b, 3b, 5b, 7, 9 (a program might be helpful)	
4.7 integrat two col $10^{\wedge}-8 .$	234 the n n table	1b, 3b, 5b, 7b, 11, write a composite Gaussian Quadrature th r of nodes, a tolerance and a maximum number of interval splits erval splits and the approximations as output. Test it on probl	ure that has the limits of al splits as inputs and a problem 2a accurate to

