MATH 333

Lab02SpaceCurves

Objective

The objective of this project is to illustrate some of the geometry of curves in space using Mathematica.

Narrative

If you have not already done so, read Section 13.1 in the text.

In this project we use the command **ParametricPlot3D**. This command allows us to plot the graph of a parametrized space curve. Also, we illustrate how we can visualize curves in space as intersections of planes and other surfaces.

Task

a) Type the command lines below into *Mathematica* in the order in which they are listed. They illustrate a trefoil knot, and a thicker version of this knot (which gives a better idea of the knots geometry). Note that to move to a new line (carrage return) in *Mathematica* without exicuting the command, use the regular <enter> key and to execute a command use the number-pad <enter> key.

```
(* A Trefoil knot *)
```

```
ParametricPlot3D[
    {(2 + Cos[1.5*t])*Cos[t],(2 + Cos[1.5*t])*Sin[t], 2*Sin[1.5*t]},
    {t, 0, 4*Pi}, PlotStyle -> Blue, PlotPoints -> 100]
ParametricPlot3D[
    {(2 + Cos[1.5*t])*Cos[t],(2 + Cos[1.5*t])*Sin[t], 2*Sin[1.5*t]},
    {t, 0, 4*Pi}, PlotStyle -> Directive[Thickness[.02], Blue],
    PlotPoints -> 100]
```

b) Continue by typing the command lines below into *Mathematica* in the order in which they are listed. They illustrate a helix, and a right circular cylinder and a sinusoidal cylinder whose intersection is the helix.

```
(* A helix *)
plot0 = ParametricPlot3D[{Cos[t], Sin[t], 0.5*t}, {t, 0, 3*Pi},
    PlotStyle -> Directive[Thickness[.02], Red]]

plot1 = ContourPlot3D[ x^2 + y^2 == 1, {x, -1.5, 1.5}, {y, -1.5, 1.5},
    {z, 0, 1.5*Pi}, ContourStyle -> Directive[Green, Opacity[.8]],
    Mesh -> None]

plot2 = ContourPlot3D[ x == Cos[2*z], {x, -1.5, 1.5}, {y, -1.5, 1.5},
    {z, 0, 1.5*Pi}, ContourStyle -> Directive[Blue, Opacity[0.8]],
    Mesh -> None]
Show[plot0, plot1, plot2, BoxRatios -> {1, 1, 1}]
```

At this point, make a hard-copy of your typed input and Mathematica's responses. Then, \ldots

c) On the last graphic you created in part (b), label (by hand) the positive x-, y-, and z-coordinate directions. Label the right circular cylinder and the sinusoidal cylinder with their equations. Finally, highlight (by hand) the helix. Your lab report will be a hard copy of your typed input and *Mathematica's* responses.

Comments

Some other curves you might enjoy looking at include:

1. the toroidal curve: $\langle (4+\sin(20t))\cos(t), (4+\sin(20t))\sin(t), \cos(20t) \rangle$ where $t \in [0, 2\pi]$,

2. the twisted cubic: $\langle t, t^2, t^3 \rangle$ where $t \in [-2, 2]$,

3. the curve: $(\sin(t), \sin(2t), \sin(3t))$ where $t \in [0, 2\pi]$.

For the toroidal curve you might want to use the option numpoints=200 to produce a smooth curve.