Objective

The objective of this project is to illustrate some of the relationships between partial derivatives and tangent lines to surfaces using Mathematica.

Narrative

If you have not already done so, read Section 14.3 in the text.
In this project we use the commands Plot3D and ParametricPlot3D. These commands allows us to plot the graphs of a surface and parametrized space curves in the x and y directions. Also, we illustrate how we can visualize the partial derivatives as slopes to tangent lines in these directions.
Task
(a) Type the command lines below into Mathematica; they produce a plot of the graph of $f(x, y)=-5 x /\left(x^{2}+y^{2}+1\right)$.

```
(* Partial Derivatives *)
```

```
f[x_, y_] = -5*x/( }\mp@subsup{\textrm{x}}{~}{\wedge}2+\mp@subsup{y}{}{\wedge}2+1)
```

plot0 $=\operatorname{Plot} 3 \mathrm{D}[\mathrm{f}[\mathrm{x}, \mathrm{y}],\{\mathrm{x},-2,4\},\{\mathrm{y},-2,4\}$,
PlotStyle -> Directive[Green, Opacity[.7]]]
(b) Continue by typing the commands below into Mathematica; they set the value at which we will be drawing tangent lines.

$$
\begin{aligned}
& \mathrm{a}=2 ; \\
& \mathrm{b}=2.5 ;
\end{aligned}
$$

(c) Continue by typing the commands below; they plot the graph of f over a slightly smaller domain, plot the x-curve (in blue) of f through the point $(a, b, f(a, b)$), compute f_{x} and $f_{x}(a, b)$, and then draw the tangent line (in red) to the x-curve of f.

```
plot1 = Plot3D[f[x, y], {x, -2, 4}, {y, -2, b},
    PlotStyle -> Directive[Green, Opacity[.8]]];
curve1 = ParametricPlot3D[{t, b, f[t, b]}, {t, -2, 4},
    PlotStyle -> Directive[Blue, Thickness[.01]]];
f1 = Derivative[1, 0][f];
slope1 = f1[a, b];
tanline1 = ParametricPlot3D[{t + a, b, slope1*t + f[a, b]}, {t, -2, 4},
    PlotStyle -> Directive[Red, Thickness[.01]]];
Show[plot1, curve1, tanline1, ViewPoint -> {6, 10, 4},
        AxesLabel -> {x, y, z}, BoxRatios -> {1, 1, 1}]
```

(d) Continue by typing the commands below; they again plot the graph of f over a slighty smaller domain, plot the y-curve (in blue) of f through the point ($a, b, f(a, b)$), compute f_{y} and $f_{y}(a, b)$, and then draw the tangent line (in red) to the y-curve of f.

```
plot2 = Plot3D[f[x, y], {x, -2, a}, {y, -2, 4},
    PlotStyle -> Directive[Green, Opacity[.8]]];
curve2 = ParametricPlot3D[{a, t, f[a, t]}, {t, -2, 4},
    PlotStyle -> Directive[Blue, Thickness[.01]]];
f2 = Derivative[0, 1][f];
slope2 = f2[a, b];
tanline2 = ParametricPlot3D[{a, t + b, slope2*t + f[a, b]}, {t, -2, 4},
    PlotStyle -> Directive[Red, Thickness[.01]]];
Show[plot2, curve2, tanline2, ViewPoint -> {10, 6, 2},
    AxesLabel -> {x, y, z}, BoxRatios -> {1, 1, 1}]
```

(e) Finally, type the command line below into Mathematica; it plots the original surface, both curves and both tangent lines. Adjust the graphics to get a good view.

```
Show[plot0, curve1, tanline1, curve2, tanline2,
    AxesLabel -> {x, y, z}, BoxRatios -> {1, 1, 1}]
```

At this point, make a hard copy of your typed input and Mathematica's responses. Then,
(f) By hand, label each x-curve on the graphics you created as " x-curve", the tangent to each x-curve as "tangent to x-curve", each y-curve on the graphics you created as " y-curve", and the tangent to each y-curve as "tangent to y-curve".

