MATH 333
Lab05DoubleIntegrals
Objective The objective of this project is to illustrate how Mathematica can be used to evaluate double integrals.

Narrative If you have not already done so, read Section 15.1-15.3 of the text. In this project we illustrate how Mathematica can be used to evaluate double integrals.

Task
(1) Integrals over rectangular regions.
(a) Type the command lines below into Mathematica in the order in which they are listed; they draw the rectangle R bounded by the lines $x=1$, $x=3, y=2, y=4$, and evaluates the integral $\int_{2}^{4} \int_{1}^{3} x^{4} y^{3} e^{-x y} d x d y$.

```
(* Parts 1a and 1b *)
ContourPlot[{x == 1, x == 3, y == 2, y == 4}, {x, 0, 4},
    {y, 0, 5}, ContourStyle -> Directive[Blue, Thick]]
f[x_, y_] = x^4*y^3*Exp[-x*y];
int1a = Integrate[Integrate[f[x, y], {x, 1, 3}], {y, 2, 4}]
```

(Would you want to compute the integral by hand? Probably not. This is one of the things that makes Mathematica quite usefull.)
(b) Type the command line necessary to compute $\int_{1}^{3} \int_{2}^{4} x^{4} y^{3} e^{-x y} d y d x$.

Observe that we get the same value for the integral irrespective of the order of the limits. While this always happens when R is a rectangle it does not always happen when R is not a rectangle (as we will see below).
(2) Integrals over non-rectangular regions.
(a) Type the command lines below into Mathematica; they find the points of intersection of $y=2 x^{2}$ and $y=1+x^{2}$, draw the region R bounded by these two curves, and evaluates $\iint_{R}(x+2 y) d y d x$.

```
(* Part 2a and 2b *)
intersectionpts = Solve[{y == 2*x^2, y == 1 + x^2}, {x, y}]
ContourPlot[{y == 2*x^2, y == 1 + x^2}, {x, -1, 1},
    {y, 0, 3}, ContourStyle -> Directive[Blue, Thick]]
f[x_, y_] = x + 2*y;
int2a = Integrate[Integrate[f[x, y], {y, 2*x^2, 1 + x^2}],
        {x, -1, 1}]
```

(b) Continue by typing the command line below into Mathematica. It evaluates the integral where R is the region of part (c), intentionally using the wrong order of integration. Note that not only does our answer depend on the order of integration, but when we integrate in the wrong order our "answer" isn't even a real number!

```
int2b = Integrate[Integrate[f[x, y], {x, -1, 1}],
    {y, 2*x^2, 1 + x^2}]
```

(c) Type the command lines necessary to find the points of intersection of the region R bounded by $x=1-y^{2}$ and $x=y-y^{3}$, draw the region bounded by these two curves and evaluate the integral $\iint_{R}\left(x^{2}-4 y\right) d A$. (Hint: Look at parts (a) and (b) of Task 2.)

At this point, make a hard-copy of your typed input and Mathematica's responses. Then, by hand, label the curves bounding the region with their equations, and shade in the region.

