Objective
The objective of this project is to better acquaint you with cylindrical and spherical coordinates.

Narrative
In this project we use the ParametricPlot3D command in Mathematica along with the change of coordinate formulas to graph basic surfaces in rectangular, cylindrical, and spherical coordinates. Mathematica has a built in command to graph surfaves in spherical coordinates, but not in cylidrical, so we will stay with the more basic ParametricPlot3D command.

Task
(1) We begin by creating some graphics. (Note: Although a default set of display options is specified, you may, depending on the hardware youre using, need to modify them by manually rotating the graphics to get an acceptable hard-copy.)
(a) First we consider rectangular coordinates. Type the command lines below into Mathematica in the order in which they are listed.

```
(* Part a: Rectangular Coordinates *)
ParametricPlot3D[{1, y, z}, {y, 0, 1}, {z, 0, 1},
    PlotRange -> {{-.5, 1.5}, {-.5, 1.5}, {-.5, 1.5}}]
ParametricPlot3D[{x, 1, z}, {x, 0, 1}, {z, 0, 1},
    PlotRange -> {{-.5, 1.5}, {-.5, 1.5}, {-.5, 1.5}}]
ParametricPlot3D[{x, y, 1}, {x, 0, 1}, {y, 0, 1},
    PlotRange -> {{-.5, 1.5}, {-.5, 1.5}, {-.5, 1.5}}]
```

Note that these graphs represent part of the planes $x=1, y=1$, and $z=1$.
(b) Next we consider cylindrical coordinates. Type the command lines below into Mathematica in the order in which they are listed. Note that the $\theta$ may be found on the Math Assist palette.

```
Clear [x, y]
x[r_, \[Theta]_] = r*Cos[\[Theta]]
y[r_, \[Theta]_] = r*Sin[\[Theta]]
ParametricPlot3D[{x[1, \[Theta]], y[1, \[Theta]], z},
    {\[Theta], 0, 2*Pi}, {z, 0, 2},
    PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}, {-.5, 2.5}}]
ParametricPlot3D[{x[r, 3*Pi/4], y[r, 3*Pi/4], z}, {r, -1, 1},
    {z, 0, 2}, PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5},
    {-.5, 2.5}}]
ParametricPlot3D[{x[r, \[Theta]], y[r, \[Theta]], 1},
    {\[Theta], 0, 2*Pi}, {r, 0, 1},
    PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}, {-.5, 2.5}}]
```

(c) Next we consider spherical coordinates. Type the command lines below into Mathematica in the order in which they are listed. Note that the $\rho, \theta$, and $\phi$ may be found on the Math Assist palette.

```
Clear[x, y, z]
x[\[Rho]_, \[Theta]_, \[Phi]_] = \[Rho]*Sin[\[Phi]]*Cos[\[Theta]]
y[\[Rho]_, \[Theta]_, \[Phi]_] = \[Rho]*Sin[\[Phi]]*Sin[\[Theta]]
z[\[Rho]_, \[Theta]_, \[Phi]_] = \[Rho]*Cos[\[Phi]]
ParametricPlot3D[{x[1, \[Theta], \[Phi]], y[1, \[Theta], \[Phi]],
    z[1, \[Theta], \[Phi]]}, {\[Theta], 0, 2*Pi},
    {\[Phi], Pi/3, Pi}, PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5},
    {-1.5, 1.5}}]
ParametricPlot3D[{x[\[Rho], 3*Pi/4, \[Phi]],
    y[\[Rho], 3*Pi/4, \[Phi]], z[\[Rho], 3*Pi/4, \[Phi]]},
    {\[Rho], 0, 1}, {\[Phi], 0, Pi/2},
    PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}, {-1.5, 1.5}}]
ParametricPlot3D[{x[\[Rho], \[Theta], Pi/4],
    y[\[Rho], \[Theta], Pi/4], z[\[Rho], \[Theta], Pi/4]},
    {\[Rho], 0, 1}, {\[Theta], 0, 2*Pi},
    PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}, {-1.5, 1.5}}]
```

At this time make a hard-copy of your typed input and Mathematicas responses (both text and graphics). Then, ...
(2) Label the graphics you produced as follows:
(a) On each graphic you produced in part (a) of Task 1, label the positive $x-, y-$, and $z-$ coordinate directions.
(b) On each graphic you produced in part (b) of Task 1, label the positive $x-, y-$, and $z$-coordinate directions. On the first graphic, highlight by hand that part of the surface over which $\theta$ is between 0 and $\pi / 2$, on the second highlight that part over which $r$ is between 0 and 1 , and on the third that part over which $r$ is between 0.5 and 1 and $\theta$ is between 0 and $\pi / 2$.
(c) On each graphic you produced in part (c) of Task 1, label the positive $x-, y-$, and $z$ - coordinate directions. On the first graphic, highlight by hand that part of the surface over which $\theta$ is between 0 and $\pi / 2$ and $\phi$ is between $\pi / 4$ and $\pi / 2$, on the second highlight that part over which $\phi$ is between $\pi / 4$ and $\pi / 2$, and on the third that part over which $\theta$ is between 0 and $\pi / 2$.
Comments
(1) The parameters $\theta$ and $\phi$ you were adjusting in Project 13.5 b were the $\theta$ and $\phi$ spherical coordinates of the viewer!
(2) The effect of replacing the 1 in the $[\mathrm{x}, \mathrm{y}, 1]$ command line of Task 1 (a) by a function $z=z(x, y)$ of $x$ and $y$ is to graph $z=z(x, y)$ in rectangular coordinates over the square $x=0 . .1, y=0 . .1$. (As it stands, $z=z(x, y)=1$.) You can obtain some interesting surfaces if, in the same vein, you replace:
(a) the 1 in the $[1$, theta, z$]$ in Task $1(\mathrm{~b})$ with a function $r=r(\theta, z)$,
(b) the $3^{*} \mathrm{Pi} / 4$ in the $\left[\mathrm{r}, 3^{*} \mathrm{Pi} / 4, \mathrm{z}\right]$ in Task $1(\mathrm{~b})$ with a function $\theta=\theta(r, z)$,
(c) the 1 in the $[\mathrm{r}$, theta, 1$]$ in Task $1(\mathrm{~b})$ with a function $z=z(r, \theta)$,
(d) the 1 in the $[1$, theta, phi $]$ in Task 1 (c) with a function $\rho=\rho(\theta, \phi)$,
(e) the $3^{*} \mathrm{Pi} / 4$ in the $\left[\right.$ rho $\left., 3^{*} \mathrm{Pi} / 4, \mathrm{z}\right]$ in Task 1 (c) with a function $\theta=\theta(\rho, \phi)$,
(f) the 1 in the $[\mathrm{r}$, theta, 1$]$ in Task $1(\mathrm{c})$ with a function $\phi=\phi(\rho, \theta)$.

Try experimenting, and see what you get!

