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Applied Matrix Algebra
Markov Chains

Objective The objective of this project is to illustrate how Markov Chains can be manip-
ulated using Mathematica.

Narrative If you have not already done so, read Section 3.4 of the text. Markov chains are
used as a way of modeling systems that sequentially change between several states. Ex-
amples of such systems include random walks, population migration, and simple gambling
problems.

Simple models that use Markov Chains often use compartmental diagrams to show
the relations between the various possible states. The compartmental diagram shown
here represents a model that has four possible states (the boxes), {s1, s2, s3, s4}, and the
possible change of states (the arrows) with their associated probabilities {p1, . . . , p10}.
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In this diagram we see that an object that starts in state s1 can “move” to state s2
with probability p1, or move to state s3 with probability p2, or move to state s4 with
probability p3. Note that the object can not go directly from state s2 to s4 and that the
object must move out of s1, s2, or s4, but may stay in s3 with probability p10.

In this example we will assume that 0 ≤ pi ≤ 1 and the sum of all outward probabilities
for an individual state will be 1. i.e. p4 + p5 = 1 and p6 + p7 + p10 = 1.

We can convert this compartmental diagram to a mathematical system of equations as
follows. If ~xk is a vector that represents the kth distribution of objects, then the k + 1
distribution can be found through the matrix equation

~xk+1 = M~xk



where M is called the transition matrix. In the above diagram the transition matrix is
given by

M =


0 p4 0 p9
p1 0 p6 0
p2 p5 p10 p8
p3 0 p7 0


Notice that in this transition matrix, mi,j is the probability that an object currently in
the jth state will move to the ith state in the next step.

Let’s assign some probabilities to this diagram and use Mathematica to investigate this
model. If p1 = .4, p2 = .3, p3 = .3, p4 = .4, p5 = .5, p6 = .4, p7 = .4, p8 = .6, p9 = .4, and
p10 = .2, then the transition matrix, in Maple, becomes

M = {{0, 1/2, 0, 2/5},

{2/5, 0, 2/5, 0},

{3/10, 1/2, 1/5, 3/5},

{3/10,0, 2/5, 0}};

MatrixForm[M] 
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
Next suppose that the object starts in state s1, then we use matrix multiplication to find
the probability that the object will be in the state sk by (using [1, 0, 0, 0] as the initial
state)

x1 = {1, 0, 0, 0};

x2 = M.x1
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This means, as we would expect, that there is a .4 probability that the object will be in
state s2, a .3 probability of being in state s3, and a .3 probability of being in s4 after one
transition.

To find the disposition of the object after two transitions we can do the following:

x3 = M.x2 {
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}
N[x3, 8]

{0.32000000, 0.12000000, 0.44000000, 0.12000000}
Here the object has a 32% chance of ending up back in state s1, a 12% chance of being

in state s2, a 44% chance of being in state s3, and a 12% chance of being in state s4 after
two transitions when starting at s1 = {1, 0, 0, 0}.



What about after ten transitions? We could do this in a couple of ways. To answer
this directly we could use exponentiation as follows

x11 = MatrixPower[M, 10, x1]{
4034527

19531250
,
2122472

9765625
,
2355859

6250000
,

31117757

156250000

}
N[x11, 8]

{0.20656778, 0.21734113, 0.37693744, 0.19915364}
Alternately, we could calculate all intermediary transitions:

s = Array[f, 11];

s[[1]] = x1;

Do[s[[k + 1]] = M.s[[k]], {k, 1, 10}];

Using this last method allows us to plot the various iterations.

plt1 = ListPlot[Table[{k, s[[k, 1]]}, {k, 1, 11}], PlotStyle -> Red,

PlotMarkers -> {"\[Square]", 10},

PlotRange -> {{0, 12}, {-0.2, 1.2}}];

plt2 = ListPlot[Table[{k, s[[k, 2]]}, {k, 1, 11}], PlotStyle -> Blue,

PlotMarkers -> {"\[CircleDot]", 10},

PlotRange -> {{0, 12}, {-0.2, 1.2}}];

plt3 = ListPlot[Table[{k, s[[k, 3]]}, {k, 1, 11}],

PlotStyle -> Darker[Green, .5], PlotMarkers -> {"\[Diamond]", 18},

PlotRange -> {{0, 12}, {-0.2, 1.2}}];

plt4 = ListPlot[Table[{k, s[[k, 4]]}, {k, 1, 11}],

PlotStyle -> Darker[Orange], PlotMarkers -> {"\[Star]", 18},

PlotRange -> {{0, 12}, {-0.2, 1.2}}];

Show[plt1, plt2, plt3, plt4]

Note that the output to these last commands is a graphics object that are not shown
here. Also not that the symbols used as PlotMarkers can be found on the special
symbol palette. For example \[CircleDot] should be the character � from the special
character palatte.

Task

(1) In the above example, what are the probabilities after 20 iterations, 100 iterations,
and 1,000 iterations? What do you suppose will happen if we let the number of
iterations go to infinity?

(2) In the above example, start with one object in each of the states and calculate 1
transition, 10 transitions and 100 transitions. Interpret the results.

(3) On page 159 of our book, do problems 6. Note: you will need to read about regular
stochastic matrices to do parts (c) - (f).


